Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America.
PLoS Biol. 2013 Jul;11(7):e1001614. doi: 10.1371/journal.pbio.1001614. Epub 2013 Jul 23.
Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and pathogenic states in response to temperature.
在宿主温度下生存是人类致病性微生物的关键特征。包括荚膜组织胞浆菌在内的热二形真菌病原体是土壤真菌,它们会根据宿主温度的变化而在细胞形态和毒力基因表达上发生巨大变化。这些生物体如何将温度变化与形态发育和毒力特征的表达联系起来尚不清楚。在这里,我们阐明了荚膜组织胞浆菌中一个对温度有反应的转录网络,该网络在环境中从丝状形态切换到体温下的致病性酵母形态。该回路由三个高度保守的因子驱动,即 Ryp1、Ryp2 和 Ryp3,它们是在 37°C 下酵母相生长所必需的。Ryp 因子属于控制真菌发育转变的不同蛋白家族:Ryp1 是 WOPR 家族转录因子的成员,而 Ryp2 和 Ryp3 都是 Velvet 家族蛋白的成员,其分子功能尚不清楚。在这里,我们首次提供证据表明这些 WOPR 和 Velvet 蛋白相互作用,并且 Velvet 蛋白与 DNA 结合以驱动基因表达。通过全基因组染色质免疫沉淀研究,我们确定 Ryp1、Ryp2 和 Ryp3 与一个大的共同基因组位点相关,其中包括已知的毒力基因,这表明 Ryp 因子直接控制致病性所必需的基因,除了它们在调节细胞形态中的作用。我们通过确定第四个转录因子 Ryp4 进一步剖析了 Ryp 调控回路,该转录因子我们命名为 Ryp4,是酵母相生长和基因表达所必需的,与 DNA 结合,并与 Ryp1、Ryp2 和 Ryp3 表现出相互依存的调控关系。最后,我们定义了顺式作用基序,该基序将 Ryp 因子招募到其相互交织的温度响应靶基因网络中。总之,我们的研究结果揭示了一个正反馈回路,该回路在环境和致病性状态之间指导着广泛的转录开关,以响应温度的变化。