Suppr超能文献

通过数据丰富的静电计算揭示膜蛋白特性

Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

作者信息

Marcoline Frank V, Bethel Neville, Guerriero Christopher J, Brodsky Jeffrey L, Grabe Michael

机构信息

Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.

Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Integrative Program in Quantitative Biology, University of California, San Francisco, CA 94158, USA.

出版信息

Structure. 2015 Aug 4;23(8):1526-1537. doi: 10.1016/j.str.2015.05.014. Epub 2015 Jun 25.

Abstract

The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information.

摘要

膜蛋白的静电特性往往揭示出许多关键的生物物理特征,如离子通道选择性和带电跨膜片段的稳定性。泊松-玻尔兹曼(PB)方程是计算蛋白质静电的金标准,而软件APBSmem能够在有膜存在的情况下求解PB方程。在此,我们描述了APBSmem的重大进展,包括系统设置的完全自动化、按残基的能量分解、整合PDB2PQR、计算膜诱导的pKa位移、计算非极性能量以及用于大规模计算的命令行脚本。我们通过对多种膜蛋白进行计算来突出这些新特性,其中包括最近解析出结构的离子通道TRPV1以及对1614种已知结构的膜蛋白进行的大规模研究。这项研究提供了一份在嵌入膜中时具有较大静电罚分的残基的综合列表,可能揭示出有趣的功能信息。

相似文献

1
Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.
Structure. 2015 Aug 4;23(8):1526-1537. doi: 10.1016/j.str.2015.05.014. Epub 2015 Jun 25.
3
APBSmem: a graphical interface for electrostatic calculations at the membrane.
PLoS One. 2010 Sep 29;5(9):e12722. doi: 10.1371/journal.pone.0012722.
5
Mode of membrane insertion of individual transmembrane segments in Mdl1 and Mdl2, multi-spanning mitochondrial ABC transporters.
FEBS Lett. 2014 Sep 17;588(18):3445-53. doi: 10.1016/j.febslet.2014.08.001. Epub 2014 Aug 13.
6
The electrostatics of VDAC: implications for selectivity and gating.
J Mol Biol. 2010 Feb 26;396(3):580-92. doi: 10.1016/j.jmb.2009.12.006. Epub 2009 Dec 11.
7
Novel β-structure of YLR301w from Saccharomyces cerevisiae.
Acta Crystallogr D Biol Crystallogr. 2012 May;68(Pt 5):531-40. doi: 10.1107/S090744491200491X. Epub 2012 Apr 17.
9
Permeation and dynamics of an open-activated TRPV1 channel.
J Mol Biol. 2015 Jan 30;427(2):537-49. doi: 10.1016/j.jmb.2014.11.016. Epub 2014 Dec 3.
10
Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
J Physiol. 2007 Jun 1;581(Pt 2):741-55. doi: 10.1113/jphysiol.2007.130161. Epub 2007 Mar 15.

引用本文的文献

2
Mitochondrial uncouplers induce proton leak by activating AAC and UCP1.
Nature. 2022 Jun;606(7912):180-187. doi: 10.1038/s41586-022-04747-5. Epub 2022 May 25.
3
Correction Schemes for Absolute Binding Free Energies Involving Lipid Bilayers.
J Chem Theory Comput. 2022 Apr 12;18(4):2657-2672. doi: 10.1021/acs.jctc.1c01251. Epub 2022 Mar 22.
4
Molecular mechanism of sugar transport in plants unveiled by structures of glucose/H symporter STP10.
Nat Plants. 2021 Oct;7(10):1409-1419. doi: 10.1038/s41477-021-00992-0. Epub 2021 Sep 23.
5
Labeling Preferences of Diazirines with Protein Biomolecules.
J Am Chem Soc. 2021 May 5;143(17):6691-6700. doi: 10.1021/jacs.1c02509. Epub 2021 Apr 20.
6
Protein Structure Prediction and Design in a Biologically Realistic Implicit Membrane.
Biophys J. 2020 Apr 21;118(8):2042-2055. doi: 10.1016/j.bpj.2020.03.006. Epub 2020 Mar 14.
7
9
Harmonizing Experimental Data with Modeling to Predict Membrane Protein Insertion in Yeast.
Biophys J. 2019 Aug 20;117(4):668-678. doi: 10.1016/j.bpj.2019.07.013. Epub 2019 Jul 16.
10
MemBlob database and server for identifying transmembrane regions using cryo-EM maps.
Bioinformatics. 2020 Apr 15;36(8):2595-2598. doi: 10.1093/bioinformatics/btz539.

本文引用的文献

2
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
3
Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1.
Nat Struct Mol Biol. 2014 Jul;21(7):626-32. doi: 10.1038/nsmb.2841. Epub 2014 Jun 8.
5
Structural determinants of water permeation through the sodium-galactose transporter vSGLT.
Biophys J. 2014 Mar 18;106(6):1280-9. doi: 10.1016/j.bpj.2014.01.006.
6
TRPV1 structures in distinct conformations reveal activation mechanisms.
Nature. 2013 Dec 5;504(7478):113-8. doi: 10.1038/nature12823.
7
Structure of the TRPV1 ion channel determined by electron cryo-microscopy.
Nature. 2013 Dec 5;504(7478):107-12. doi: 10.1038/nature12822.
8
ATP transport through VDAC and the VDAC-tubulin complex probed by equilibrium and nonequilibrium MD simulations.
Biochemistry. 2013 Dec 23;52(51):9246-56. doi: 10.1021/bi4011495. Epub 2013 Nov 25.
9
Protein dielectric constants determined from NMR chemical shift perturbations.
J Am Chem Soc. 2013 Nov 13;135(45):16968-76. doi: 10.1021/ja406995j. Epub 2013 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验