Suppr超能文献

从 NMR 化学位移扰动确定蛋白质介电常数。

Protein dielectric constants determined from NMR chemical shift perturbations.

机构信息

School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin , Belfield, Dublin 4, Ireland.

出版信息

J Am Chem Soc. 2013 Nov 13;135(45):16968-76. doi: 10.1021/ja406995j. Epub 2013 Oct 31.

Abstract

Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatic calculations are essential for this purpose, but their use has been limited by a long-standing discussion on which value to use for the dielectric constants (ε(eff) and ε(p)) required in Coulombic and Poisson-Boltzmann models. The currently used values for ε(eff) and ε(p) are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for ε(eff) and ε(p) by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in 14 proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (ε(eff)) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (ε(p)) ranged from 2 to 5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders and how different it is from the ε(p) of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of ε(p) = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pK(a) values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable ε(p) common to most folded proteins.

摘要

理解蛋白质结构与功能之间的关系需要定量了解静电效应。为此,基于结构的静电计算至关重要,但由于库仑和泊松-玻尔兹曼模型中所需介电常数 (ε(eff) 和 ε(p)) 的值的长期讨论,其应用受到限制。目前使用的 ε(eff) 和 ε(p) 值本质上是针对热力学性质校准的经验参数,而热力学性质是蛋白质电场的间接测量。我们通过使用 NMR 化学位移扰动 (CSP) 的直接检测在溶液中测量蛋白质电场,确定 ε(eff) 和 ε(p) 的最佳值。我们测量了 14 种蛋白质的 CSP,以广泛而全面地描述电场。库仑定律使用 3 到 13 的蛋白质介电常数 (ε(eff)) 最佳地再现了测量的 CSP,所有蛋白质的最佳值为 6.5。然而,当用水处理蛋白质界面时,使用有限差分泊松-玻尔兹曼计算,最佳蛋白质介电常数 (ε(p)) 范围从 2 到 5,最佳值为 3。令人惊讶的是,这个值与测量的蛋白质粉末的介电常数 2-4 如此相似,与用于计算热力学参数的基于泊松-玻尔兹曼方程的模型中使用的 6-20 的 ε(p) 如此不同。由于 ε(p) = 3 的值是通过分析 NMR 化学位移扰动而不是 pK(a) 值等热力学参数获得的,因此它可能仅描述电场,因此代表更普遍、内在和可转移的 ε(p),这是大多数折叠蛋白质所共有的。

相似文献

1
Protein dielectric constants determined from NMR chemical shift perturbations.
J Am Chem Soc. 2013 Nov 13;135(45):16968-76. doi: 10.1021/ja406995j. Epub 2013 Oct 31.
2
The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins.
Biophys J. 1998 Apr;74(4):1744-53. doi: 10.1016/S0006-3495(98)77885-3.
7
A fast and simple method to calculate protonation states in proteins.
Proteins. 1999 Sep 1;36(4):474-83. doi: 10.1002/(sici)1097-0134(19990901)36:4<474::aid-prot12>3.0.co;2-v.
8
Protein apparent dielectric constant and its temperature dependence from remote chemical shift effects.
J Am Chem Soc. 2014 Sep 17;136(37):12816-9. doi: 10.1021/ja505852b. Epub 2014 Sep 5.
10
Comparison of dielectric response models for simulating electrostatic effects in proteins.
Protein Eng. 1990 Apr;3(5):415-7. doi: 10.1093/protein/3.5.415.

引用本文的文献

1
Molecular Dynamics Force Field Parameters for the EGFP Chromophore and Some of Its Analogues.
J Phys Chem B. 2023 Jul 6;127(26):5772-5788. doi: 10.1021/acs.jpcb.3c01486. Epub 2023 Jun 26.
2
Identifying promising druggable binding sites and their flexibility to target the receptor-binding domain of SARS-CoV-2 spike protein.
Comput Struct Biotechnol J. 2023;21:2339-2351. doi: 10.1016/j.csbj.2023.03.029. Epub 2023 Mar 18.
4
Rational Tuning of the Reactivity of Three-Membered Heterocycle Ring Openings via S 2 Reactions.
Chemistry. 2022 Oct 26;28(60):e202201649. doi: 10.1002/chem.202201649. Epub 2022 Aug 29.
5
Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors.
Sci Adv. 2021 Sep 17;7(38):eabg8387. doi: 10.1126/sciadv.abg8387. Epub 2021 Sep 15.
6
NMR spectroscopy charges into protein surface electrostatics.
Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2110176118.
7
Identification of the Interactions Interference Between the PH and START Domain of CERT by Limonoid and HPA Inhibitors.
Front Mol Biosci. 2020 Nov 27;7:603983. doi: 10.3389/fmolb.2020.603983. eCollection 2020.
8
Novel phosphatidylinositol 4-kinases III beta (PI4KIIIβ) inhibitors discovered by virtual screening using free energy models.
J Comput Aided Mol Des. 2020 Oct;34(10):1091-1103. doi: 10.1007/s10822-020-00327-9. Epub 2020 Jun 30.
9
Variations in Proteins Dielectric Constants.
ChemistryOpen. 2020 Jun 8;9(6):691-694. doi: 10.1002/open.202000108. eCollection 2020 Jun.
10
Random coil chemical shifts for serine, threonine and tyrosine phosphorylation over a broad pH range.
J Biomol NMR. 2019 Dec;73(12):713-725. doi: 10.1007/s10858-019-00283-z. Epub 2019 Oct 9.

本文引用的文献

1
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations.
J Biomol NMR. 2011 Sep;51(1-2):5-19. doi: 10.1007/s10858-011-9537-x. Epub 2011 Sep 27.
2
On the development of protein pKa calculation algorithms.
Proteins. 2011 Dec;79(12):3287-98. doi: 10.1002/prot.23091. Epub 2011 Jul 8.
5
Charges in the hydrophobic interior of proteins.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16096-100. doi: 10.1073/pnas.1004213107. Epub 2010 Aug 26.
6
Structural origins of pH-dependent chemical shifts in the B1 domain of protein G.
Proteins. 2010 Nov 1;78(14):3000-16. doi: 10.1002/prot.22825.
7
Titration_DB: storage and analysis of NMR-monitored protein pH titration curves.
Proteins. 2010 Mar;78(4):843-57. doi: 10.1002/prot.22611.
9
Metal-mediated self-assembly of a beta-sandwich protein.
Chemistry. 2009 Nov 23;15(46):12672-80. doi: 10.1002/chem.200901410.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验