Suppr超能文献

苜蓿中华根瘤菌1021菌株形成氯仿和四氯乙烯的过程

Formation of chloroform and tetrachloroethene by Sinorhizobium meliloti strain 1021.

作者信息

Weigold P, Ruecker A, Jochmann M, Osorio Barajas X L, Lege S, Zwiener C, Kappler A, Behrens S

机构信息

Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany.

Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.

出版信息

Lett Appl Microbiol. 2015 Oct;61(4):346-53. doi: 10.1111/lam.12462. Epub 2015 Aug 4.

Abstract

UNLABELLED

The mechanisms and organisms involved in the natural formation of volatile organohalogen compounds (VOX) are largely unknown. We provide evidence that the common and widespread soil bacterium Sinorhizobium meliloti strain 1021 is capable of producing up to 3338·6 ± 327·8 ng l(-1) headspace volume of chloroform (CHCl3 ) and 807·8 ± 13·5 ng l(-1)  headspace volume of tetrachloroethene (C2 Cl4 ) within 1 h when grown in soil extract medium. Biotic VOX formation has been suggested to be linked to the activity of halogenating enzymes such as haloperoxidases. We tested if the observed VOX formation by S. meliloti can be attributed to one of its chloroperoxidases (Smc01944) that is highly expressed in the presence of H2 O2. However, addition of 10 mmol l(-1) H2 O2 to the S. meliloti cultures decreased VOX formation by 52% for chloroform and 25% for tetrachloroethene, while viable cell numbers decreased by 23%. Interestingly, smc01944 gene expression increased 450-fold. The quantification of extracellular chlorination activity in cell suspension experiments did not provide evidence for a role of S. meliloti chloroperoxidases in the observed VOX formation. This suggests that a momentarily unknown mechanism which requires no H2 O2 might be responsible for the VOX formation by S. meliloti. Regardless of the underlying mechanism our results suggest that the soil bacterium S. meliloti might be an important source of VOX in soils.

SIGNIFICANCE AND IMPACT OF THE STUDY

Volatile organohalogen compounds (VOX) strongly influence atmospheric chemistry and Earth's climate. Besides anthropogenic emissions they are naturally produced by either abiotic or biotic pathways in various environments. Particularly in soils, microbial processes drive the natural halogen cycle but the direct link to microbial VOX formation has not been studied in detail yet. In this study we provide evidence that the common and widespread soil bacterium Sinorhizobium meliloti strain 1021 forms chloroform and tetrachloroethene. The potential contribution of S. meliloti to soil VOX release could significantly influence soil and atmospheric chemistry.

摘要

未标记

挥发性有机卤化物(VOX)自然形成过程中涉及的机制和生物体在很大程度上尚不清楚。我们提供的证据表明,常见且分布广泛的土壤细菌苜蓿中华根瘤菌1021菌株,在土壤提取培养基中生长时,1小时内能够产生高达3338.6±327.8纳克/升顶空体积的氯仿(CHCl₃)和807.8±13.5纳克/升顶空体积的四氯乙烯(C₂Cl₄)。生物性VOX形成被认为与卤化酶如卤过氧化物酶的活性有关。我们测试了苜蓿中华根瘤菌观察到的VOX形成是否可归因于其一种在过氧化氢存在下高度表达的氯过氧化物酶(Smc01944)。然而,向苜蓿中华根瘤菌培养物中添加10毫摩尔/升过氧化氢,氯仿的VOX形成减少了52%,四氯乙烯减少了25%,而活细胞数量减少了23%。有趣的是,smc01944基因表达增加了450倍。细胞悬浮实验中细胞外氯化活性的定量分析没有为苜蓿中华根瘤菌氯过氧化物酶在观察到的VOX形成中发挥作用提供证据。这表明一种暂时未知的、不需要过氧化氢的机制可能是苜蓿中华根瘤菌形成VOX的原因。无论潜在机制如何,我们的结果表明土壤细菌苜蓿中华根瘤菌可能是土壤中VOX的重要来源。

研究的意义和影响

挥发性有机卤化物(VOX)强烈影响大气化学和地球气候。除了人为排放外,它们在各种环境中通过非生物或生物途径自然产生。特别是在土壤中,微生物过程驱动着自然卤素循环,但与微生物VOX形成的直接联系尚未得到详细研究。在本研究中,我们提供证据表明常见且分布广泛的土壤细菌苜蓿中华根瘤菌1021菌株能形成氯仿和四氯乙烯。苜蓿中华根瘤菌对土壤VOX释放的潜在贡献可能会显著影响土壤和大气化学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验