Hill Shannon E, Donegan Rebecca K, Nguyen Elaine, Desai Tanay M, Lieberman Raquel L
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America.
PLoS One. 2015 Jun 29;10(6):e0130888. doi: 10.1371/journal.pone.0130888. eCollection 2015.
Olfactomedin (OLF) domains are found within extracellular, multidomain proteins in numerous tissues of multicellular organisms. Even though these proteins have been implicated in human disorders ranging from cancers to attention deficit disorder to glaucoma, little is known about their structure(s) and function(s). Here we biophysically, biochemically, and structurally characterize OLF domains from H. sapiens olfactomedin-1 (npoh-OLF, also called noelin, pancortin, OLFM1, and hOlfA), and M. musculus gliomedin (glio-OLF, also called collomin, collmin, and CRG-L2), and compare them with available structures of myocilin (myoc-OLF) recently reported by us and R. norvegicus glio-OLF and M. musculus latrophilin-3 (lat3-OLF) by others. Although the five-bladed β-propeller architecture remains unchanged, numerous physicochemical characteristics differ among these OLF domains. First, npoh-OLF and glio-OLF exhibit prominent, yet distinct, positive surface charges and copurify with polynucleotides. Second, whereas npoh-OLF and myoc-OLF exhibit thermal stabilities typical of human proteins near 55°C, and most myoc-OLF variants are destabilized and highly prone to aggregation, glio-OLF is nearly 20°C more stable and significantly more resistant to chemical denaturation. Phylogenetically, glio-OLF is most similar to primitive OLFs, and structurally, glio-OLF is missing distinguishing features seen in OLFs such as the disulfide bond formed by N- and C- terminal cysteines, the sequestered Ca2+ ion within the propeller central hydrophilic cavity, and a key loop-stabilizing cation-π interaction on the top face of npoh-OLF and myoc-OLF. While deciphering the explicit biological functions, ligands, and binding partners for OLF domains will likely continue to be a challenging long-term experimental pursuit, we used structural insights gained here to generate a new antibody selective for myoc-OLF over npoh-OLF and glio-OLF as a first step in overcoming the impasse in detailed functional characterization of these biomedically important protein domains.
嗅觉介质(OLF)结构域存在于多细胞生物众多组织中的细胞外多结构域蛋白内。尽管这些蛋白质与从癌症到注意力缺陷障碍再到青光眼等多种人类疾病有关,但对其结构和功能却知之甚少。在此,我们通过生物物理学、生物化学和结构生物学方法对智人嗅觉介质 -1(npoh - OLF,也称为noelin、pancortin、OLFM1和hOlfA)以及小家鼠神经胶质瘤介质(glio - OLF,也称为collomin、collmin和CRG - L2)的OLF结构域进行了表征,并将它们与我们最近报道的肌纤蛋白(myoc - OLF)以及其他人报道的褐家鼠神经胶质瘤介质OLF和小家鼠latrophilin - 3(lat3 - OLF)的现有结构进行了比较。尽管五叶β - 螺旋桨结构保持不变,但这些OLF结构域在许多物理化学特性上存在差异。首先,npoh - OLF和glio - OLF表现出显著但不同的正表面电荷,并与多核苷酸共纯化。其次,npoh - OLF和myoc - OLF在接近55°C时表现出典型的人类蛋白质热稳定性,并且大多数myoc - OLF变体不稳定且极易聚集,而glio - OLF的稳定性则高出近20°C,并且对化学变性的抵抗力明显更强。从系统发育角度来看,glio - OLF与原始OLF最为相似,从结构上看,glio - OLF缺少OLF中常见的一些特征,如由N端和C端半胱氨酸形成的二硫键、螺旋桨中心亲水腔内螯合的Ca2 +离子,以及npoh - OLF和myoc - OLF顶面上关键的环稳定阳离子 - π相互作用。虽然解读OLF结构域的明确生物学功能、配体和结合伴侣可能仍然是一项具有挑战性的长期实验工作,但我们利用在此获得的结构见解,制备了一种对myoc - OLF具有选择性而对npoh - OLF和glio - OLF无选择性的新抗体,作为克服这些具有重要生物医学意义的蛋白质结构域详细功能表征僵局的第一步。