Suppr超能文献

利用卫星影像烟雾辅助确定加利福尼亚中部野火对细颗粒物(PM₂.₅)影响的统计模型。

A statistical model for determining impact of wildland fires on Particulate Matter (PM₂.₅) in Central California aided by satellite imagery of smoke.

机构信息

USDA Forest Service, Pacific Southwest Research Station, 800 Buchanan St., WAB, Albany, CA 94706, USA.

Environmental Systems Graduate Group, University of California, Merced, 5200 N. Lake Road, Merced, CA 95343, USA.

出版信息

Environ Pollut. 2015 Oct;205:340-9. doi: 10.1016/j.envpol.2015.06.018. Epub 2015 Jun 26.

Abstract

As the climate in California warms and wildfires become larger and more severe, satellite-based observational tools are frequently used for studying impact of those fires on air quality. However little objective work has been done to quantify the skill these satellite observations of smoke plumes have in predicting impacts to PM2.5 concentrations at ground level monitors, especially those monitors used to determine attainment values for air quality under the Clean Air Act. Using PM2.5 monitoring data from a suite of monitors throughout the Central California area, we found a significant, but weak relationship between satellite-observed smoke plumes and PM2.5 concentrations measured at the surface. However, when combined with an autoregressive statistical model that uses weather and seasonal factors to identify thresholds for flagging unusual events at these sites, we found that the presence of smoke plumes could reliably identify periods of wildfire influence with 95% accuracy.

摘要

随着加利福尼亚州气候变暖,野火变得越来越大,越来越严重,卫星观测工具经常被用于研究这些火灾对空气质量的影响。然而,很少有客观的工作来量化这些卫星观测烟雾羽流在预测地面水平监测仪(尤其是用于确定《清洁空气法》下空气质量达标值的监测仪)中 PM2.5 浓度影响方面的准确性。我们使用来自加利福尼亚中部地区一系列监测仪的 PM2.5 监测数据,发现卫星观测到的烟雾羽流与地表测量的 PM2.5 浓度之间存在显著但较弱的关系。然而,当与使用天气和季节性因素来确定这些站点异常事件阈值的自回归统计模型结合使用时,我们发现烟雾羽流的存在可以可靠地识别野火影响的时间段,准确率为 95%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验