Jin Bora, Peruzzi Michele, Dunson David
Department of Biostatistics, Johns Hopkins University.
Department of Biostatistics, University of Michigan-Ann Arbor.
Bayesian Anal. 2024 Nov 11. doi: 10.1214/24-ba1473.
We propose a class of nonstationary processes to characterize space- and time-varying directional associations in point-referenced data. We are motivated by spatiotemporal modeling of air pollutants in which local wind patterns are key determinants of the pollutant spread, but information regarding prevailing wind directions may be missing or unreliable. We propose to map a discrete set of wind directions to edges in a sparse directed acyclic graph (DAG), accounting for uncertainty in directional correlation patterns across a domain. The resulting Bag of DAGs processes (BAGs) lead to interpretable nonstationarity and scalability for large data due to sparsity of DAGs in the bag. We outline Bayesian hierarchical models using BAGs and illustrate inferential and performance gains of our methods compared to other state-of-the-art alternatives. We analyze fine particulate matter using high-resolution data from low-cost air quality sensors in California during the 2020 wildfire season. An R package is available on GitHub.
我们提出了一类非平稳过程,以表征点参考数据中的时空变化方向关联。我们的动机来自于空气污染物的时空建模,其中局部风型是污染物扩散的关键决定因素,但有关盛行风向的信息可能缺失或不可靠。我们建议将一组离散的风向映射到稀疏有向无环图(DAG)的边,同时考虑整个区域方向相关模式中的不确定性。由于袋中DAG的稀疏性,由此产生的袋式有向无环图过程(BAGs)导致了可解释的非平稳性和大数据的可扩展性。我们概述了使用BAGs的贝叶斯层次模型,并说明了与其他现有替代方法相比,我们的方法在推理和性能方面的优势。我们使用2020年野火季节加利福尼亚州低成本空气质量传感器的高分辨率数据分析细颗粒物。GitHub上提供了一个R包。