Suppr超能文献

有向无环图集合:推断时空过程中的方向依赖性

Bag of DAGs: Inferring Directional Dependence in Spatiotemporal Processes.

作者信息

Jin Bora, Peruzzi Michele, Dunson David

机构信息

Department of Biostatistics, Johns Hopkins University.

Department of Biostatistics, University of Michigan-Ann Arbor.

出版信息

Bayesian Anal. 2024 Nov 11. doi: 10.1214/24-ba1473.

Abstract

We propose a class of nonstationary processes to characterize space- and time-varying directional associations in point-referenced data. We are motivated by spatiotemporal modeling of air pollutants in which local wind patterns are key determinants of the pollutant spread, but information regarding prevailing wind directions may be missing or unreliable. We propose to map a discrete set of wind directions to edges in a sparse directed acyclic graph (DAG), accounting for uncertainty in directional correlation patterns across a domain. The resulting Bag of DAGs processes (BAGs) lead to interpretable nonstationarity and scalability for large data due to sparsity of DAGs in the bag. We outline Bayesian hierarchical models using BAGs and illustrate inferential and performance gains of our methods compared to other state-of-the-art alternatives. We analyze fine particulate matter using high-resolution data from low-cost air quality sensors in California during the 2020 wildfire season. An R package is available on GitHub.

摘要

我们提出了一类非平稳过程,以表征点参考数据中的时空变化方向关联。我们的动机来自于空气污染物的时空建模,其中局部风型是污染物扩散的关键决定因素,但有关盛行风向的信息可能缺失或不可靠。我们建议将一组离散的风向映射到稀疏有向无环图(DAG)的边,同时考虑整个区域方向相关模式中的不确定性。由于袋中DAG的稀疏性,由此产生的袋式有向无环图过程(BAGs)导致了可解释的非平稳性和大数据的可扩展性。我们概述了使用BAGs的贝叶斯层次模型,并说明了与其他现有替代方法相比,我们的方法在推理和性能方面的优势。我们使用2020年野火季节加利福尼亚州低成本空气质量传感器的高分辨率数据分析细颗粒物。GitHub上提供了一个R包。

相似文献

引用本文的文献

本文引用的文献

8
Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan.气象条件对日本长崎PM2.5浓度的影响。
Int J Environ Res Public Health. 2015 Aug 3;12(8):9089-101. doi: 10.3390/ijerph120809089.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验