Suppr超能文献

离体主动脉组织多光谱图像的盲源分离

Blind source separation of ex-vivo aorta tissue multispectral images.

作者信息

Galeano July, Perez Sandra, Montoya Yonatan, Botina Deivid, Garzón Johnson

机构信息

Grupo de Materiales Avanzados y Energía -MatyEr-. Línea Electromedicina. Instituto Tecnológico Metropolitano. Calle 54A No. 30-01 Medellín- Colombia.

Grupo de Dinámica Cardiovascular. Universidad Pontificia Bolivariana, Circular 1 No. 73-76, Medellín- Colombia ; Grupo de Óptica y Espectroscopía -GOE- Universidad Pontificia Bolivariana, Circular 1 No. 73-76, Medellín- Colombia.

出版信息

Biomed Opt Express. 2015 Apr 6;6(5):1589-98. doi: 10.1364/BOE.6.001589. eCollection 2015 May 1.

Abstract

Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method's performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue.

摘要

盲源分离方法(BSS)旨在将给定信号分解为其主要成分或源信号。这些技术在文献中已被广泛用于生物医学图像分析,以提取所研究器官或组织的主要成分。分析皮肤图像以提取黑色素和血红蛋白就是使用BSS的一个例子。本文展示了对离体主动脉组织多光谱图像进行源分离应用的概念验证。这些图像是通过基于干涉滤光片的成像系统采集的。图像通过两种算法进行处理:独立成分分析和非负矩阵分解。在这两种情况下,都可以获得量化主动脉组织中主要发色团浓度的图谱。此外,这些算法还能得出主要组织成分的光谱吸光度。通过使用相关系数将这些光谱特征与理论特征进行比较。这些系数报告的值接近0.9,这是该方法性能的一个良好估计值。此外,相关系数还能根据所评估的发色团识别浓度图谱。结果表明,多光谱/高光谱系统与图像处理技术相结合是分析心血管组织的一个潜在工具。

相似文献

1
Blind source separation of ex-vivo aorta tissue multispectral images.离体主动脉组织多光谱图像的盲源分离
Biomed Opt Express. 2015 Apr 6;6(5):1589-98. doi: 10.1364/BOE.6.001589. eCollection 2015 May 1.
6

本文引用的文献

1
Medical hyperspectral imaging: a review.医学高光谱成像:综述
J Biomed Opt. 2014 Jan;19(1):10901. doi: 10.1117/1.JBO.19.1.010901.
6
Light scattering spectroscopy of human skin in vivo.人体皮肤活体光散射光谱学。
Opt Express. 2009 Feb 2;17(3):1256-67. doi: 10.1364/oe.17.001256.
7
Methodology of a real-time quality control for the multispectral digital colposcope (MDC).多光谱数字阴道镜(MDC)实时质量控制方法
Gynecol Oncol. 2007 Oct;107(1 Suppl 1):S215-22. doi: 10.1016/j.ygyno.2007.07.016. Epub 2007 Sep 7.
8
Projected gradient methods for nonnegative matrix factorization.非负矩阵分解的投影梯度法。
Neural Comput. 2007 Oct;19(10):2756-79. doi: 10.1162/neco.2007.19.10.2756.
10
Independent component analysis: algorithms and applications.独立成分分析:算法与应用
Neural Netw. 2000 May-Jun;13(4-5):411-30. doi: 10.1016/s0893-6080(00)00026-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验