Gallippi Caterina M, Trahey Gregg E
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
Ultrason Imaging. 2002 Oct;24(4):193-214. doi: 10.1177/016173460202400401.
A method for adaptive clutter rejection via blind source separation (BSS) using principal and independent component analyses is presented in application to blood velocity measurement in the carotid artery. In particular, the filtering method's efficacy for eliminating clutter and preserving lateral blood flow signal components is presented. The performance of IIR filters is compromised by shorth data ensembles (10 to 20 temporal samples) as implemented for color-flow and high frame-rate imaging due to initialization requirements. Further, the ultrasonic imaging system's transfer function maps axial wall and lateral blood motion to overlapping spectra. As such, frequency domain-based approaches to wall filtering are ineffective for distinguishing wall from blood motion signals. Rather than operating in the frequency domain. BSS performs clutter rejection by decomposing the input data ensemble into N constitutive source signals in time, where N is the ensemble length. Source signal energy coupled with respective signal depth and time course profiles reveal which source signals correspond to blood, noise and clutter components. Clutter components may then be removed without disruption of lateral blood flow information needed for two-dimensional blood velocity measurement. A simplistic data simulation is employed to offer an intuitive understanding of BSS methods for signal separation. The adaptive BSS filter is further demonstrated using a Field II simulation of blood flow through the carotid artery including tissue motion. BSS clutter filter performance is compared to the performance of FIR, IIR and polynomial regression clutter filters. Finally, the filter is employed for clinical application using a Siemens Elegra scanner, carotid artery data with lateral blood flow collected from healthy volunteers, and Speckle Tracking; velocity magnitude and angle profiles are shown. Once again, the BSS clutter filter is contrasted to FIR, IIR and polynomial regression clutter filters using clinical examples. Velocities computed with Speckle Tracking after BSS wall filtering are highest in the center of the artery and diminish to low velocities near the vessel walls, with velocity magnitudes consistent with physiological expectations. These results demonstrate that the BSS adaptive filter sufficiently suppresses wall motion signal for clinical lateral blood velocity measurement using data ensembles suitable for color-flow and high frame-rate imaging.
提出了一种通过主成分分析和独立成分分析进行盲源分离(BSS)的自适应杂波抑制方法,并将其应用于颈动脉血流速度测量。特别介绍了该滤波方法在消除杂波和保留横向血流信号成分方面的有效性。由于初始化要求,对于彩色血流和高帧率成像所采用的短数据集合(10至20个时间样本),IIR滤波器的性能会受到影响。此外,超声成像系统的传递函数将轴向壁运动和横向血流运动映射到重叠频谱。因此,基于频域的壁滤波方法在区分壁运动信号和血流信号方面无效。BSS不是在频域中操作,而是通过将输入数据集合在时间上分解为N个本构源信号来执行杂波抑制,其中N是集合长度。源信号能量与各自的信号深度和时间历程剖面相结合,揭示了哪些源信号对应于血液、噪声和杂波成分。然后可以去除杂波成分,而不会破坏二维血流速度测量所需的横向血流信息。采用了一个简单的数据模拟,以便直观地理解用于信号分离的BSS方法。使用包括组织运动的颈动脉血流的Field II模拟进一步演示了自适应BSS滤波器。将BSS杂波滤波器的性能与FIR、IIR和多项式回归杂波滤波器的性能进行了比较。最后,使用西门子Elegra扫描仪、从健康志愿者收集的具有横向血流的颈动脉数据以及斑点追踪技术将该滤波器用于临床应用;展示了速度大小和角度剖面。再次使用临床实例将BSS杂波滤波器与FIR、IIR和多项式回归杂波滤波器进行对比。在BSS壁滤波后通过斑点追踪计算得到的速度在动脉中心最高,在血管壁附近降低到低速度,速度大小与生理预期一致。这些结果表明,BSS自适应滤波器能够充分抑制壁运动信号,以便使用适用于彩色血流和高帧率成像的数据集合进行临床横向血流速度测量。