Ferreira-Camargo Livia S, Tran Miller, Beld Joris, Burkart Michael D, Mayfield Stephen P
Division of Biological Sciences, UC San Diego, 9500 Gilman Drive, Bonner Hall, La Jolla, CA, 92093-0368, USA,
AMB Express. 2015 Dec;5(1):126. doi: 10.1186/s13568-015-0126-3. Epub 2015 Jul 3.
Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly, little has been done to determine which processes serve as rate-limiting steps for protein accumulation. In other expression systems, as Escherichia coli, Chinese hamster ovary cells, and insect cells, recombinant protein accumulation can be hampered by cell's inability to fold the target polypeptide into the native state, resulting in aggregation and degradation. To determine if chloroplasts' ability to oxidize proteins that require disulfide bonds into a stable conformation is a rate-limiting step of protein accumulation, three recombinant strains, each expressing a different recombinant protein, were analyzed. These recombinant proteins included fluorescent GFP, a reporter containing no disulfide bonds; Gaussia princeps luciferase, a luminescent reporter containing disulfide bonds; and an immunotoxin, an antibody-fusion protein containing disulfide bonds. Each strain was analyzed for its ability to accumulate proteins when supplemented with selenocystamine, a small molecule capable of catalyzing the formation of disulfide bonds. Selenocystamine supplementation led to an increase in luciferase and immunotoxin but not GFP accumulation. These results demonstrated that selenocystamine can increase the accumulation of proteins containing disulfide bonds and suggests that a rate-limiting step in chloroplast protein accumulation is the disulfide bonds formation in recombinant proteins native structure.
真核绿藻已成为越来越受欢迎的重组蛋白生产平台。特别是莱茵衣藻,因其具备生产疫苗、人抗体及下一代癌症靶向免疫毒素所需的生化机制而备受关注。虽然已经表明叶绿体含有伴侣蛋白、肽基脯氨酰异构酶和蛋白质二硫键异构酶,这些有助于这些复杂蛋白质的折叠和组装,但对于确定哪些过程是蛋白质积累的限速步骤却鲜有研究。在其他表达系统中,如大肠杆菌、中国仓鼠卵巢细胞和昆虫细胞,重组蛋白的积累可能会因细胞无法将目标多肽折叠成天然状态而受到阻碍,导致聚集和降解。为了确定叶绿体将需要二硫键的蛋白质氧化成稳定构象的能力是否是蛋白质积累的限速步骤,分析了三种分别表达不同重组蛋白的重组菌株。这些重组蛋白包括荧光绿色荧光蛋白(GFP),一种不含二硫键的报告蛋白;高斯海链藻荧光素酶,一种含有二硫键的发光报告蛋白;以及一种免疫毒素,一种含有二硫键的抗体融合蛋白。当添加能够催化二硫键形成的小分子硒代胱胺时,分析了每个菌株积累蛋白质的能力。添加硒代胱胺导致荧光素酶和免疫毒素的积累增加,但GFP的积累没有增加。这些结果表明,硒代胱胺可以增加含有二硫键的蛋白质的积累,并表明叶绿体蛋白质积累的一个限速步骤是重组蛋白天然结构中二硫键的形成。