Suppr超能文献

通过近红外触发生物分子释放实现远程神经活动调节。

Remote modulation of neural activities via near-infrared triggered release of biomolecules.

机构信息

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.

Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore.

出版信息

Biomaterials. 2015 Oct;65:76-85. doi: 10.1016/j.biomaterials.2015.06.041. Epub 2015 Jun 25.

Abstract

The capability to remotely control the release of biomolecules provides an unique opportunity to monitor and regulate neural signaling, which spans extraordinary spatial and temporal scales. While various strategies, including local perfusion, molecular "uncaging", or photosensitive polymeric materials, have been applied to achieve controlled releasing of neuro-active substances, it is still challenging to adopt these technologies in many experimental contexts that require a straightforward but versatile loading-releasing mechanism. Here, we develop a synthetic strategy for remotely controllable releasing of neuro-modulating molecules. This platform is based on microscale composite hydrogels that incorporate polypyrrole (PPy) nanoparticles as photo-thermal transducers and is triggered by near-infrared-light (NIR) irradiation. Specifically, we first demonstrate the utility of our technology by recapitulating the "turning assay" and "collapse assay", which involve localized treatment of chemotactic factors (e.g. Netrin or Semaphorin 3A) to subcellular neural elements and have been extensively used in studying axonal pathfinding. On a network scale, the photo-sensitive microgels are also validated for light-controlled releasing of neurotransmitters (e.g. glutamate). A single NIR-triggered release is sufficient to change the dynamics of a cultured hippocampal neuron network. Taking the advantage of NIR's capability to penetrate deep into live tissue, this technology is further shown to work similarly well in vivo, which is evidenced by synchronized spiking activity in response to NIR-triggered delivery of glutamate in rat auditory cortex, demonstrating remote control of brain activity without any genetic modifications. Notably, our nano-composite microgels are capable of delivering various molecules, ranging from small chemicals to large proteins, without involving any crosslinking chemistry. Such great versatility and ease-of-use will likely make our optically-controlled delivery technology a general and important tool in cell biology research.

摘要

远程控制生物分子释放的能力为监测和调节跨越非凡时空尺度的神经信号提供了独特的机会。虽然已经应用了各种策略,包括局部灌注、分子“解笼”或光响应聚合物材料,来实现神经活性物质的受控释放,但在许多需要简单但多功能加载-释放机制的实验环境中,采用这些技术仍然具有挑战性。在这里,我们开发了一种用于远程控制神经调节分子释放的合成策略。该平台基于包含聚吡咯(PPy)纳米颗粒的微尺度复合水凝胶,作为光热换能器,并由近红外光(NIR)照射触发。具体来说,我们首先通过再现“转向测定”和“崩溃测定”来证明我们技术的实用性,这两种测定涉及化学趋化因子(如 Netrin 或 Semaphorin 3A)的局部处理到亚细胞神经元件,并且已经广泛用于研究轴突寻径。在网络规模上,还验证了光敏感微凝胶对神经递质(如谷氨酸)的光控释放。单次 NIR 触发的释放就足以改变培养的海马神经元网络的动力学。利用 NIR 穿透活体组织的能力,该技术在体内也表现出同样的效果,这可以通过大鼠听觉皮层中谷氨酸的 NIR 触发递送引起的同步尖峰活动来证明,证明了无需任何遗传修饰即可远程控制大脑活动。值得注意的是,我们的纳米复合微凝胶能够递送各种分子,从小分子化学物质到大分子蛋白质,而不涉及任何交联化学。这种极大的多功能性和易用性可能使我们的光控递药技术成为细胞生物学研究中的一种通用且重要的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验