Suppr超能文献

DNA中紫外线损伤的起源。

Origin of ultraviolet damage in DNA.

作者信息

Becker M M, Wang Z

机构信息

Department of Biological Sciences, University of Pittsburgh, PA 15260.

出版信息

J Mol Biol. 1989 Dec 5;210(3):429-38. doi: 10.1016/0022-2836(89)90120-4.

Abstract

A novel ultraviolet (u.v.) footprinting technique has been used to analyze the formation of u.v. photoproducts at 250 bases of a 5 S rRNA gene under conditions where the gene is either double or single-stranded. Because many more types of u.v. damage can be detected by the u.v. footprinting technique than has been previously possible, we have been able to examine in detail why certain bases in DNA are damaged by u.v. light while others are not. Our measurements demonstrate that the ability of u.v. light to damage a given base in DNA is determined by two factors, the sequence of the DNA in the immediate vicinity of the photoproduct, and the flexibility of the DNA at the site of the photoproduct. For pyrimidines, the predominant photoreaction in double-stranded DNA involves covalent dimerization between adjacent pyrimidine residues. Dimerization is much easier in melted DNA because the geometrical changes required for adjacent pyrimidine residues to dimerize are easier in single-stranded DNA. The absorption of a u.v. photon cannot simultaneously induce the geometrical changes required for adjacent pyrimidines or other bases to dimerize with one another. Rather, upon the absorption of a u.v. photon, only those thermally excited bases that are in a geometry capable of easily forming a photodimer during excitation, can photoreact. In contrast to adjacent pyrimidines, non-adjacent pyrimidines (pyrimidines flanked on either side by a purine) do not readily form u.v. photoproducts in double-stranded DNA. Because photoreactions at non-adjacent pyrimidine residues are greatly enhanced in single-stranded DNA, their failure to form in double-helical DNA is attributed to torsional constraints imposed by the double helix which make it difficult for non-adjacent pyrimidines to adopt a geometry necessary for photoreaction. Although purines are believed to be resistant to u.v. damage, our measurements demonstrate that at moderate u.v. dosages purines which are flanked on their 5' side by two or more contiguous pyrimidines readily form u.v. photoproducts in double-stranded DNA. Flanking pyrimidines appear to activate purine photoreactions by transferring triplet excitation energy to the purine. Melting of the DNA helix greatly inhibits the ability of flanking pyrimidines to activate purine photoreactions, presumably by disrupting intimate orbital overlap required for triplet transfer.

摘要

一种新型的紫外线足迹技术已被用于分析在5S rRNA基因的250个碱基处,该基因处于双链或单链状态时紫外线光产物的形成情况。由于紫外线足迹技术能够检测到比以往更多类型的紫外线损伤,我们得以详细研究为何DNA中的某些碱基会被紫外线破坏而其他碱基则不会。我们的测量结果表明,紫外线破坏DNA中特定碱基的能力取决于两个因素,即光产物紧邻区域的DNA序列,以及光产物所在位点的DNA柔韧性。对于嘧啶来说,双链DNA中的主要光反应涉及相邻嘧啶残基之间的共价二聚化。在解链的DNA中,二聚化要容易得多,因为相邻嘧啶残基二聚化所需的几何变化在单链DNA中更容易实现。吸收一个紫外线光子并不能同时诱导相邻嘧啶或其他碱基彼此二聚化所需的几何变化。相反,在吸收一个紫外线光子后,只有那些处于在激发过程中能够轻松形成光二聚体的几何构型的热激发碱基才能发生光反应。与相邻嘧啶不同,非相邻嘧啶(两侧由嘌呤侧翼的嘧啶)在双链DNA中不容易形成紫外线光产物。由于非相邻嘧啶残基处的光反应在单链DNA中会大大增强,它们在双螺旋DNA中未能形成被归因于双螺旋施加的扭转限制,这使得非相邻嘧啶难以采取光反应所需的几何构型。尽管嘌呤被认为对紫外线损伤具有抗性,但我们的测量结果表明,在中等紫外线剂量下,其5'侧由两个或更多连续嘧啶侧翼的嘌呤在双链DNA中很容易形成紫外线光产物。侧翼嘧啶似乎通过将三重态激发能转移到嘌呤来激活嘌呤光反应。DNA螺旋的解链极大地抑制了侧翼嘧啶激活嘌呤光反应的能力,大概是通过破坏三重态转移所需的紧密轨道重叠来实现的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验