Suppr超能文献

非马尔可夫多状态模型的转移概率估计

Transition probability estimates for non-Markov multi-state models.

作者信息

Titman Andrew C

机构信息

Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, U.K.

出版信息

Biometrics. 2015 Dec;71(4):1034-41. doi: 10.1111/biom.12349. Epub 2015 Jul 6.

Abstract

Non-parametric estimation of the transition probabilities in multi-state models is considered for non-Markov processes. Firstly, a generalization of the estimator of Pepe et al., (1991) (Statistics in Medicine) is given for a class of progressive multi-state models based on the difference between Kaplan-Meier estimators. Secondly, a general estimator for progressive or non-progressive models is proposed based upon constructed univariate survival or competing risks processes which retain the Markov property. The properties of the estimators and their associated standard errors are investigated through simulation. The estimators are demonstrated on datasets relating to survival and recurrence in patients with colon cancer and prothrombin levels in liver cirrhosis patients.

摘要

对于非马尔可夫过程,考虑多状态模型中转移概率的非参数估计。首先,基于Kaplan-Meier估计量之间的差异,针对一类渐进多状态模型给出了Pepe等人(1991年,《医学统计学》)估计量的推广。其次,基于构建的保留马尔可夫性质的单变量生存或竞争风险过程,提出了一种适用于渐进或非渐进模型的通用估计量。通过模拟研究了估计量及其相关标准误差的性质。在与结肠癌患者生存和复发以及肝硬化患者凝血酶原水平相关的数据集上展示了这些估计量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验