Suppr超能文献

开发预测模型来估计两种生存结局同时发生的风险:技术比较。

Developing prediction models to estimate the risk of two survival outcomes both occurring: A comparison of techniques.

机构信息

Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.

Institute of Applied Health Research, University of Birmingham, Birmingham, UK.

出版信息

Stat Med. 2023 Aug 15;42(18):3184-3207. doi: 10.1002/sim.9771. Epub 2023 May 23.

Abstract

INTRODUCTION

This study considers the prediction of the time until two survival outcomes have both occurred. We compared a variety of analytical methods motivated by a typical clinical problem of multimorbidity prognosis.

METHODS

We considered five methods: product (multiply marginal risks), dual-outcome (directly model the time until both events occur), multistate models (msm), and a range of copula and frailty models. We assessed calibration and discrimination under a variety of simulated data scenarios, varying outcome prevalence, and the amount of residual correlation. The simulation focused on model misspecification and statistical power. Using data from the Clinical Practice Research Datalink, we compared model performance when predicting the risk of cardiovascular disease and type 2 diabetes both occurring.

RESULTS

Discrimination was similar for all methods. The product method was poorly calibrated in the presence of residual correlation. The msm and dual-outcome models were the most robust to model misspecification but suffered a drop in performance at small sample sizes due to overfitting, which the copula and frailty model were less susceptible to. The copula and frailty model's performance were highly dependent on the underlying data structure. In the clinical example, the product method was poorly calibrated when adjusting for 8 major cardiovascular risk factors.

DISCUSSION

We recommend the dual-outcome method for predicting the risk of two survival outcomes both occurring. It was the most robust to model misspecification, although was also the most prone to overfitting. The clinical example motivates the use of the methods considered in this study.

摘要

简介

本研究考虑了预测两个生存结局同时发生的时间。我们比较了各种分析方法,这些方法的动机是多疾病预后的一个典型临床问题。

方法

我们考虑了五种方法:乘积(相乘的边缘风险)、双重结局(直接模拟两个事件同时发生的时间)、多状态模型(msm),以及一系列 Copula 和脆弱性模型。我们根据各种模拟数据情况评估了校准和区分,这些情况包括结局的流行率和剩余相关性的数量。模拟侧重于模型的误指定和统计功效。使用来自临床实践研究数据库的数据,我们比较了当预测心血管疾病和 2 型糖尿病都发生的风险时,各种模型的性能。

结果

所有方法的区分度都相似。在存在剩余相关性的情况下,乘积方法的校准效果较差。msm 和双重结局模型对模型误指定最稳健,但由于过度拟合,在小样本量下性能下降,而 Copula 和脆弱性模型则不太容易受到影响。Copula 和脆弱性模型的性能高度依赖于基础数据结构。在临床示例中,当调整 8 个主要心血管风险因素时,乘积方法的校准效果较差。

讨论

我们建议使用双重结局方法来预测两个生存结局同时发生的风险。它对模型误指定最稳健,尽管也最容易过度拟合。临床示例激发了本研究中考虑的方法的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e785/11155421/2978a8f3516d/SIM-42-3184-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验