Bakoyannis Giorgos, Bandyopadhyay Dipankar
Department of Biostatistics and Health Data Science, Indiana University, 410 West 10th Street, Suite 3000, Indianapolis, Indiana 46202, U.S.A.
Department of Biostatistics, Virginia Commonwealth University, 830 East Main Street Richmond, Virginia 23219, U.S.A.
Ann Inst Stat Math. 2022 Oct;74(5):837-867. doi: 10.1007/s10463-021-00819-x. Epub 2022 Jan 22.
In this work, we propose nonparametric two-sample tests for population-averaged transition and state occupation probabilities for continuous-time and finite state space processes with clustered, right-censored, and/or left-truncated data. We consider settings where the two groups under comparison are independent or dependent, with or without complete cluster structure. The proposed tests do not impose assumptions regarding the structure of the within-cluster dependence and are applicable to settings with informative cluster size and/or non-Markov processes. The asymptotic properties of the tests are rigorously established using empirical process theory. Simulation studies show that the proposed tests work well even with a small number of clusters, and that they can be substantially more powerful compared to the only, to the best of our knowledge, previously proposed test for this problem. The tests are illustrated using data from a multicenter randomized controlled trial on metastatic squamous-cell carcinoma of the head and neck.
在这项工作中,我们针对具有聚类、右删失和/或左截断数据的连续时间和有限状态空间过程,提出了用于总体平均转移概率和状态占用概率的非参数两样本检验。我们考虑了两种比较组独立或相关的情况,有或没有完整的聚类结构。所提出的检验不要求关于聚类内依赖性结构的假设,并且适用于具有信息性聚类大小和/或非马尔可夫过程的情况。使用经验过程理论严格建立了检验的渐近性质。模拟研究表明,即使聚类数量较少,所提出的检验也能很好地发挥作用,并且与据我们所知之前针对此问题提出的唯一检验相比,它们的功效可能会显著更高。使用来自一项关于头颈部转移性鳞状细胞癌的多中心随机对照试验的数据对这些检验进行了说明。