Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.
University of Florida, Gainesville, FL, USA.
BMC Bioinformatics. 2024 Nov 18;25(1):359. doi: 10.1186/s12859-024-05969-2.
The rewiring of molecular interactions in various conditions leads to distinct phenotypic outcomes. Differential network analysis (DINA) is dedicated to exploring these rewirings within gene and protein networks. Leveraging statistical learning and graph theory, DINA algorithms scrutinize alterations in interaction patterns derived from experimental data.
Introducing a novel approach to differential network analysis, we incorporate differential gene expression based on sex and gender attributes. We hypothesize that gene expression can be accurately represented through non-Gaussian processes. Our methodology involves quantifying changes in non-parametric correlations among gene pairs and expression levels of individual genes.
Applying our method to public expression datasets concerning diabetes mellitus and atherosclerosis in liver tissue, we identify gender-specific differential networks. Results underscore the biological relevance of our approach in uncovering meaningful molecular distinctions.
在各种条件下,分子相互作用的重新布线导致了不同的表型结果。差异网络分析(DINA)致力于探索基因和蛋白质网络中的这些重新布线。利用统计学习和图论,DINA 算法仔细研究了从实验数据中得出的相互作用模式的变化。
我们引入了一种新的差异网络分析方法,将基于性别和性别属性的差异基因表达纳入其中。我们假设基因表达可以通过非高斯过程准确地表示。我们的方法包括量化基因对之间的非参数相关性以及单个基因表达水平的变化。
将我们的方法应用于涉及肝脏组织中糖尿病和动脉粥样硬化的公共表达数据集,我们确定了性别特异性差异网络。结果强调了我们的方法在揭示有意义的分子差异方面的生物学相关性。