Capuani Fabrizio, De Martino Daniele, Marinari Enzo, De Martino Andrea
Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, Rome (Italy).
1] Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, Rome (Italy) [2] Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome (Italy).
Sci Rep. 2015 Jul 7;5:11880. doi: 10.1038/srep11880.
Cancer cells utilize large amounts of ATP to sustain growth, relying primarily on non-oxidative, fermentative pathways for its production. In many types of cancers this leads, even in the presence of oxygen, to the secretion of carbon equivalents (usually in the form of lactate) in the cell's surroundings, a feature known as the Warburg effect. While the molecular basis of this phenomenon are still to be elucidated, it is clear that the spilling of energy resources contributes to creating a peculiar microenvironment for tumors, possibly characterized by a degree of toxicity. This suggests that mechanisms for recycling the fermentation products (e.g. a lactate shuttle) may be active, effectively inducing a mutually beneficial metabolic coupling between aberrant and non-aberrant cells. Here we analyze this scenario through a large-scale in silico metabolic model of interacting human cells. By going beyond the cell-autonomous description, we show that elementary physico-chemical constraints indeed favor the establishment of such a coupling under very broad conditions. The characterization we obtained by tuning the aberrant cell's demand for ATP, amino-acids and fatty acids and/or the imbalance in nutrient partitioning provides quantitative support to the idea that synergistic multi-cell effects play a central role in cancer sustainment.
癌细胞利用大量三磷酸腺苷(ATP)来维持生长,其产生主要依赖于非氧化、发酵途径。在许多类型的癌症中,即使在有氧的情况下,这也会导致细胞周围环境中碳等价物(通常以乳酸的形式)的分泌,这一特征被称为瓦伯格效应。虽然这一现象的分子基础仍有待阐明,但很明显,能量资源的泄漏有助于为肿瘤创造一个特殊的微环境,其可能具有一定程度的毒性。这表明回收发酵产物的机制(例如乳酸穿梭)可能是活跃的,有效地诱导异常细胞与非异常细胞之间形成互利的代谢耦合。在这里,我们通过一个大规模的计算机模拟的相互作用的人类细胞代谢模型来分析这种情况。通过超越细胞自主描述,我们表明基本的物理化学限制确实在非常广泛的条件下有利于这种耦合的建立。我们通过调整异常细胞对ATP、氨基酸和脂肪酸的需求以及/或者营养分配的不平衡所获得的特征,为协同多细胞效应在癌症维持中起核心作用这一观点提供了定量支持。