Suppr超能文献

基于Curvelet 矩的数字化乳腺钼靶图像乳腺癌诊断

Breast cancer diagnosis in digitized mammograms using curvelet moments.

机构信息

Research Team on Intelligent Systems in Imaging and Artificial Vision (SIIVA) - RIADI Laboratory, ISI, 2 Street Abou Rayhane Bayrouni, 2080 Ariana, Tunisia.

出版信息

Comput Biol Med. 2015 Sep;64:79-90. doi: 10.1016/j.compbiomed.2015.06.012. Epub 2015 Jun 26.

Abstract

BACKGROUND

Feature extraction is a key issue in designing a computer aided diagnosis system. Recent researches on breast cancer diagnosis have reported the effectiveness of multiscale transforms (wavelets and curvelets) for mammogram analysis and have shown the superiority of curvelet transform. However, the curse of dimensionality problem arises when using the curvelet coefficients and therefore a reduction method is required to extract a reduced set of discriminative features.

METHODS

This paper deals with this problem and proposes a feature extraction method based on curvelet transform and moment theory for mammogram description. First, we performed discrete curvelet transform and we computed the four first-order moments from curvelet coefficients distribution. Hence, two feature sets can be obtained: moments from each band and moments from each level. In this work, both sets are studied. Then, the t-test ranking technique was applied to select the best features from each set. Finally, a k-nearest neighbor classifier was used to distinguish between normal and abnormal breast tissues and to classify tumors as malignant or benign. Experiments were performed on 252 mammograms from the Mammographic Image Analysis Society (mini-MIAS) database using the leave-one-out cross validation as well as on 11553 mammograms from the Digital Database for Screening Mammography (DDSM) database using 2×5-fold cross validation.

RESULTS

Experimental results prove the effectiveness and the superiority of curvelet moments for mammogram analysis. Indeed, results on the mini-MIAS database show that curvelet moments yield an accuracy of 91.27% (resp. 81.35 %) with 10 (resp. 8) features for abnormality (resp. malignancy) detection. In addition, empirical comparisons of the proposed method against state-of-the-art curvelet-based methods on the DDSM database show that the suggested method does not only lead to a more reduced feature set, but it also statistically outperforms all the compared methods in terms of accuracy.

CONCLUSIONS

In summary, curvelet moments are an efficient and effective way to extract a reduced set of discriminative features for breast cancer diagnosis.

摘要

背景

特征提取是设计计算机辅助诊断系统的关键问题。最近有关乳腺癌诊断的研究报告了多尺度变换(小波和曲波)在乳房 X 线照片分析中的有效性,并表明了曲波变换的优越性。然而,当使用曲波系数时,会出现维数灾难问题,因此需要采用降维方法来提取一组有区别的特征。

方法

本文针对这一问题,提出了一种基于曲波变换和矩理论的特征提取方法,用于描述乳房 X 线照片。首先,我们进行离散曲波变换,并计算曲波系数分布的四个一阶矩。因此,可以得到两组特征:来自每个频带的矩和来自每个级别的矩。在这项工作中,我们研究了这两组特征。然后,应用 t 检验排序技术从每组特征中选择最佳特征。最后,使用 k 最近邻分类器来区分正常和异常的乳腺组织,并对肿瘤进行良恶性分类。实验分别在来自 Mammographic Image Analysis Society(mini-MIAS)数据库的 252 张乳房 X 线照片和来自 Digital Database for Screening Mammography(DDSM)数据库的 11553 张乳房 X 线照片上进行,使用留一法交叉验证和 2×5 折交叉验证。

结果

实验结果证明了曲波矩在乳房 X 线照片分析中的有效性和优越性。事实上,在 mini-MIAS 数据库上的结果表明,对于异常(恶性)检测,使用 10(8)个特征时,曲波矩的准确率分别为 91.27%(81.35%)。此外,在 DDSM 数据库上,将所提出的方法与基于曲波的最新方法进行经验比较的结果表明,所提出的方法不仅可以得到更小的特征集,而且在准确性方面也明显优于所有比较方法。

结论

总之,曲波矩是提取用于乳腺癌诊断的有区别的特征的有效且高效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验