Suppr超能文献

突触小泡蛋白跨膜结构域通过干扰囊泡膜曲率影响胞吐作用。

Synaptobrevin transmembrane domain influences exocytosis by perturbing vesicle membrane curvature.

作者信息

Chang Che-Wei, Jackson Meyer B

机构信息

Department of Neuroscience, Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin.

Department of Neuroscience, Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin.

出版信息

Biophys J. 2015 Jul 7;109(1):76-84. doi: 10.1016/j.bpj.2015.05.021.

Abstract

Membrane fusion requires that nearly flat lipid bilayers deform into shapes with very high curvature. This makes membrane bending a critical force in determining fusion mechanisms. A lipid bilayer will bend spontaneously when material is distributed asymmetrically between its two monolayers, and its spontaneous curvature (C0) will influence the stability of curved fusion intermediates. Prior work on Ca(2+)-triggered exocytosis revealed that fusion pore lifetime (τ) varies with vesicle content (Q), and showed that this relation reflects membrane bending energetics. Lipids that alter C0 change the dependence of τ on Q. These results suggested that the greater stability of an initial exocytotic fusion pore associated with larger vesicles reflects the need to bend more membrane during fusion pore dilation. In this study, we explored the possibility of manipulating C0 by mutating the transmembrane domain (TMD) of the vesicle membrane protein synaptobrevin 2 (syb2). Amperometric measurements of exocytosis in mouse chromaffin cells revealed that syb2 TMD mutations altered the relation between τ and Q. The effects of these mutations showed a striking periodicity, changing sign as the structural perturbation moved through the inner and outer leaflets. Some glycine and charge mutations also influenced the dependence of τ on Q in a manner consistent with expected changes in C0. These results suggest that side chains in the syb2 TMD influence the kinetics of exocytosis by perturbing the packing of the surrounding lipids. The present results support the view that membrane bending occurs during fusion pore expansion rather than during fusion pore formation. This supports the view of an initial fusion pore through two relatively flat membranes formed by protein.

摘要

膜融合要求近乎扁平的脂质双层变形为具有非常高曲率的形状。这使得膜弯曲成为决定融合机制的关键力量。当物质在脂质双层的两个单层之间不对称分布时,脂质双层会自发弯曲,其自发曲率(C0)将影响弯曲融合中间体的稳定性。先前关于Ca(2+)触发的胞吐作用的研究表明,融合孔寿命(τ)随囊泡内容物(Q)而变化,并表明这种关系反映了膜弯曲能量学。改变C0的脂质会改变τ对Q的依赖性。这些结果表明,与较大囊泡相关的初始胞吐融合孔具有更高的稳定性,这反映了在融合孔扩张过程中需要弯曲更多的膜。在本研究中,我们探讨了通过突变囊泡膜蛋白突触结合蛋白2(syb2)的跨膜结构域(TMD)来操纵C0的可能性。对小鼠嗜铬细胞胞吐作用的安培测量表明,syb2 TMD突变改变了τ与Q之间的关系。这些突变的影响呈现出显著的周期性,随着结构扰动穿过内叶和外叶,符号发生变化。一些甘氨酸和电荷突变也以与C0预期变化一致的方式影响τ对Q的依赖性。这些结果表明,syb2 TMD中的侧链通过扰动周围脂质的堆积来影响胞吐作用的动力学。目前的结果支持这样一种观点,即膜弯曲发生在融合孔扩张期间而不是融合孔形成期间。这支持了由蛋白质形成的两个相对扁平的膜之间存在初始融合孔的观点。

相似文献

1
Synaptobrevin transmembrane domain influences exocytosis by perturbing vesicle membrane curvature.
Biophys J. 2015 Jul 7;109(1):76-84. doi: 10.1016/j.bpj.2015.05.021.
2
A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores.
J Neurosci. 2015 Apr 8;35(14):5772-80. doi: 10.1523/JNEUROSCI.3983-14.2015.
3
Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis.
Biophys J. 2010 Jun 2;98(11):2524-34. doi: 10.1016/j.bpj.2010.02.043.
4
Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion.
J Biol Chem. 2016 Feb 5;291(6):2848-57. doi: 10.1074/jbc.M115.701169. Epub 2015 Dec 8.
5
Juxtamembrane tryptophans of synaptobrevin 2 control the process of membrane fusion.
FEBS Lett. 2013 Jan 4;587(1):67-72. doi: 10.1016/j.febslet.2012.11.002. Epub 2012 Nov 21.
6
The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
J Neurosci. 2018 Aug 8;38(32):7179-7191. doi: 10.1523/JNEUROSCI.0721-18.2018. Epub 2018 Jul 16.
7
Synaptophysin Regulates Fusion Pores and Exocytosis Mode in Chromaffin Cells.
J Neurosci. 2021 Apr 21;41(16):3563-3578. doi: 10.1523/JNEUROSCI.2833-20.2021. Epub 2021 Mar 4.
9
Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region.
Biochim Biophys Acta. 2016 Apr;1858(4):855-65. doi: 10.1016/j.bbamem.2016.01.030. Epub 2016 Feb 4.
10
v-SNARE transmembrane domains function as catalysts for vesicle fusion.
Elife. 2016 Jun 25;5:e17571. doi: 10.7554/eLife.17571.

引用本文的文献

1
The function of VAMP2 in mediating membrane fusion: An overview.
Front Mol Neurosci. 2022 Dec 23;15:948160. doi: 10.3389/fnmol.2022.948160. eCollection 2022.
2
Synaptophysin transmembrane domain III controls fusion pore dynamics in Ca-triggered exocytosis.
Biophys J. 2023 Jun 6;122(11):1962-1973. doi: 10.1016/j.bpj.2022.09.029. Epub 2022 Sep 27.
3
The SNAP-25 linker supports fusion intermediates by local lipid interactions.
Elife. 2019 Mar 18;8:e41720. doi: 10.7554/eLife.41720.
5
The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
J Neurosci. 2018 Aug 8;38(32):7179-7191. doi: 10.1523/JNEUROSCI.0721-18.2018. Epub 2018 Jul 16.
6
v-SNARE function in chromaffin cells.
Pflugers Arch. 2018 Jan;470(1):169-180. doi: 10.1007/s00424-017-2066-z. Epub 2017 Sep 8.
7
Fusion pores and their control of neurotransmitter and hormone release.
J Gen Physiol. 2017 Mar 6;149(3):301-322. doi: 10.1085/jgp.201611724. Epub 2017 Feb 6.
8
Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion.
J Biol Chem. 2016 Feb 5;291(6):2848-57. doi: 10.1074/jbc.M115.701169. Epub 2015 Dec 8.
9
Membrane tension and membrane fusion.
Curr Opin Struct Biol. 2015 Aug;33:61-7. doi: 10.1016/j.sbi.2015.07.010. Epub 2015 Aug 15.

本文引用的文献

1
A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores.
J Neurosci. 2015 Apr 8;35(14):5772-80. doi: 10.1523/JNEUROSCI.3983-14.2015.
2
Molecular machines governing exocytosis of synaptic vesicles.
Nature. 2012 Oct 11;490(7419):201-7. doi: 10.1038/nature11320.
3
Inferring structures of kinetic intermediates in Ca(2+)-triggered exocytosis.
Curr Top Membr. 2011;68:185-208. doi: 10.1016/B978-0-12-385891-7.00008-8.
4
Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis.
Biophys J. 2010 Jun 2;98(11):2524-34. doi: 10.1016/j.bpj.2010.02.043.
5
SNARE complex zipping as a driving force in the dilation of proteinaceous fusion pores.
J Membr Biol. 2010 Jun;235(2):89-100. doi: 10.1007/s00232-010-9258-1. Epub 2010 May 30.
6
One SNARE complex is sufficient for membrane fusion.
Nat Struct Mol Biol. 2010 Mar;17(3):358-64. doi: 10.1038/nsmb.1748. Epub 2010 Feb 7.
7
Minimum membrane bending energies of fusion pores.
J Membr Biol. 2009 Oct;231(2-3):101-15. doi: 10.1007/s00232-009-9209-x. Epub 2009 Oct 29.
9
Helical extension of the neuronal SNARE complex into the membrane.
Nature. 2009 Jul 23;460(7254):525-8. doi: 10.1038/nature08156. Epub 2009 Jul 1.
10
Membrane fusion: grappling with SNARE and SM proteins.
Science. 2009 Jan 23;323(5913):474-7. doi: 10.1126/science.1161748.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验