Suppr超能文献

融合孔的最小膜弯曲能量。

Minimum membrane bending energies of fusion pores.

机构信息

Department of Physiology, University of Wisconsin Madison, Madison, WI 53706, USA.

出版信息

J Membr Biol. 2009 Oct;231(2-3):101-15. doi: 10.1007/s00232-009-9209-x. Epub 2009 Oct 29.

Abstract

Membranes fuse by forming highly curved intermediates, culminating in structures described as fusion pores. These hourglass-like figures that join two fusing membranes have high bending energies, which can be estimated using continuum elasticity models. Fusion pore bending energies depend strongly on shape, and the present study developed a method for determining the shape that minimizes bending energy. This was first applied to a fusion pore modeled as a single surface and then extended to a more realistic model treating a bilayer as two monolayers. For the two-monolayer model, fusion pores were found to have metastable states with energy minima at particular values of the pore diameter and bilayer separation. Fusion pore energies were relatively insensitive to membrane thickness but highly sensitive to spontaneous curvature and membrane asymmetry. With symmetrical bilayers and monolayer spontaneous curvatures of -0.1 nm(-1) (a typical value) separated by 6 nm (closest distance determined by repulsive hydration forces), fusion pore formation required 43-65 kT. The pore radius of approximately 2.25 nm fell within the range estimated from conductance measurements. With bilayer separation >6 nm, fusion pore formation required less energy, suggesting that protein scaffolds can promote fusion by bending membranes toward one another. With nonzero spontaneous monolayer curvature, the shape that minimized the energy change during fusion pore formation differed from the shape that minimized its energy after it formed. Thus, a nascent fusion pore will relax spontaneously to a new shape, consistent with the experimentally observed expansion of nascent fusion pores during viral fusion.

摘要

膜融合通过形成高度弯曲的中间体来实现,最终形成融合孔结构。这些连接两个融合膜的沙漏状结构具有较高的弯曲能,可以使用连续弹性模型进行估计。融合孔弯曲能强烈依赖于形状,本研究开发了一种确定最小化弯曲能的形状的方法。该方法首先应用于单表面建模的融合孔,然后扩展到更现实的双层膜作为两个单层膜模型。对于双层膜模型,发现融合孔具有亚稳态,其能量最小值出现在特定的孔径和双层分离值处。融合孔能量对膜厚度相对不敏感,但对自发曲率和膜不对称性高度敏感。对于对称双层膜和单层自发曲率为-0.1nm^(-1)(典型值),分离距离为 6nm(由排斥水合力决定的最近距离),融合孔形成需要 43-65kT。孔半径约为 2.25nm,落在电导测量估计的范围内。当双层分离距离大于 6nm 时,融合孔形成所需的能量更少,这表明蛋白质支架可以通过使膜彼此弯曲来促进融合。对于非零自发单层曲率,在融合孔形成过程中最小化能量变化的形状与形成后最小化其能量的形状不同。因此,新生的融合孔将自发松弛到新的形状,这与实验观察到的病毒融合过程中新生融合孔的扩张一致。

相似文献

1
Minimum membrane bending energies of fusion pores.融合孔的最小膜弯曲能量。
J Membr Biol. 2009 Oct;231(2-3):101-15. doi: 10.1007/s00232-009-9209-x. Epub 2009 Oct 29.
4
Teardrop shapes minimize bending energy of fusion pores connecting planar bilayers.泪滴形状可使连接平面双层膜的融合孔的弯曲能量最小化。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062701. doi: 10.1103/PhysRevE.88.062701. Epub 2013 Dec 2.
9
The exocytotic fusion pore modeled as a lipidic pore.胞吐融合孔被模拟为脂质孔。
Biophys J. 1992 Oct;63(4):1118-32. doi: 10.1016/S0006-3495(92)81679-X.

引用本文的文献

1
Three membrane fusion pore families determine the pathway to pore dilation.三种膜融合孔家族决定了孔扩张的途径。
Biophys J. 2023 Oct 3;122(19):3986-3998. doi: 10.1016/j.bpj.2023.08.021. Epub 2023 Aug 28.
10
v-SNARE function in chromaffin cells.囊泡相关膜蛋白 SNARE 功能在嗜铬细胞中的作用。
Pflugers Arch. 2018 Jan;470(1):169-180. doi: 10.1007/s00424-017-2066-z. Epub 2017 Sep 8.

本文引用的文献

1
The Gaussian curvature elastic energy of intermediates in membrane fusion.膜融合中间体的高斯曲率弹性能量。
Biophys J. 2008 Dec;95(11):5200-15. doi: 10.1529/biophysj.108.140152. Epub 2008 Sep 19.
2
Mechanics of membrane fusion.膜融合机制。
Nat Struct Mol Biol. 2008 Jul;15(7):675-83. doi: 10.1038/nsmb.1455.
3
Calculation of free energy barriers to the fusion of small vesicles.小囊泡融合自由能垒的计算。
Biophys J. 2008 Mar 1;94(5):1699-706. doi: 10.1529/biophysj.107.119511. Epub 2007 Nov 16.
4
Molecular dynamics simulations of lipid vesicle fusion in atomic detail.脂质囊泡融合的原子细节分子动力学模拟。
Biophys J. 2007 Jun 15;92(12):4254-61. doi: 10.1529/biophysj.106.103572. Epub 2007 Mar 23.
6
Elastic curvature constants of lipid monolayers and bilayers.脂质单层膜和双层膜的弹性曲率常数。
Chem Phys Lipids. 2006 Nov-Dec;144(2):146-59. doi: 10.1016/j.chemphyslip.2006.08.004. Epub 2006 Sep 6.
8
How proteins produce cellular membrane curvature.蛋白质如何产生细胞膜曲率。
Nat Rev Mol Cell Biol. 2006 Jan;7(1):9-19. doi: 10.1038/nrm1784.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验