Suppr超能文献

调节模型脂质双层膜的厚度波动

Tuning membrane thickness fluctuations in model lipid bilayers.

作者信息

Ashkar Rana, Nagao Michihiro, Butler Paul D, Woodka Andrea C, Sen Mani K, Koga Tadanori

机构信息

National Institute of Standards and Technology (NIST) Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland; Department of Material Science and Engineering, University of Maryland, College Park, Maryland.

National Institute of Standards and Technology (NIST) Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland; Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana.

出版信息

Biophys J. 2015 Jul 7;109(1):106-12. doi: 10.1016/j.bpj.2015.05.033.

Abstract

Membrane thickness fluctuations have been associated with a variety of critical membrane phenomena, such as cellular exchange, pore formation, and protein binding, which are intimately related to cell functionality and effective pharmaceuticals. Therefore, understanding how these fluctuations are controlled can remarkably impact medical applications involving selective macromolecule binding and efficient cellular drug intake. Interestingly, previous reports on single-component bilayers show almost identical thickness fluctuation patterns for all investigated lipid tail-lengths, with similar temperature-independent membrane thickness fluctuation amplitude in the fluid phase and a rapid suppression of fluctuations upon transition to the gel phase. Presumably, in vivo functions require a tunability of these parameters, suggesting that more complex model systems are necessary. In this study, we explore lipid tail-length mismatch as a regulator for membrane fluctuations. Unilamellar vesicles of an equimolar mixture of dimyristoylphosphatidylcholine and distearoylphosphatidylcholine molecules, with different tail-lengths and melting transition temperatures, are used as a model system for this next level of complexity. Indeed, this binary system exhibits a significant response of membrane dynamics to thermal variations. The system also suggests a decoupling of the amplitude and the relaxation time of the membrane thickness fluctuations, implying a potential for independent control of these two key parameters.

摘要

膜厚度波动与多种关键的膜现象相关,如细胞交换、孔形成和蛋白质结合,这些现象与细胞功能和有效药物密切相关。因此,了解这些波动如何被控制会对涉及选择性大分子结合和高效细胞药物摄取的医学应用产生显著影响。有趣的是,先前关于单组分双层膜的报道显示,对于所有研究的脂质尾长,其厚度波动模式几乎相同,在液相中具有相似的与温度无关的膜厚度波动幅度,并且在转变为凝胶相时波动迅速受到抑制。据推测,体内功能需要这些参数具有可调性,这表明需要更复杂的模型系统。在本研究中,我们探索脂质尾长不匹配作为膜波动的调节剂。将具有不同尾长和熔化转变温度的二肉豆蔻酰磷脂酰胆碱和二硬脂酰磷脂酰胆碱分子的等摩尔混合物的单层囊泡用作这种更高复杂性水平的模型系统。确实,这个二元系统对热变化表现出显著的膜动力学响应。该系统还表明膜厚度波动的幅度和弛豫时间解耦,这意味着有可能独立控制这两个关键参数。

相似文献

1
Tuning membrane thickness fluctuations in model lipid bilayers.
Biophys J. 2015 Jul 7;109(1):106-12. doi: 10.1016/j.bpj.2015.05.033.
2
The component group structure of DPPC bilayers obtained by specular neutron reflectometry.
Soft Matter. 2015 Aug 21;11(31):6275-83. doi: 10.1039/c5sm00274e.
3
Lipid bilayers and membrane dynamics: insight into thickness fluctuations.
Phys Rev Lett. 2012 Aug 3;109(5):058102. doi: 10.1103/PhysRevLett.109.058102. Epub 2012 Jul 31.
4
What determines the thickness of a biological membrane.
Gen Physiol Biophys. 2009 Jun;28(2):117-25. doi: 10.4149/gpb_2009_02_117.
5
A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers.
J Chem Theory Comput. 2017 Feb 14;13(2):916-925. doi: 10.1021/acs.jctc.6b00968. Epub 2017 Jan 26.
7
Nanoscopic dynamics of phospholipid in unilamellar vesicles: effect of gel to fluid phase transition.
J Phys Chem B. 2015 Mar 26;119(12):4460-70. doi: 10.1021/acs.jpcb.5b00220. Epub 2015 Mar 17.
8
Lipid rearrangement in DSPC/DMPC bilayers: a neutron reflectometry study.
Langmuir. 2012 Nov 13;28(45):15922-8. doi: 10.1021/la303662e. Epub 2012 Nov 2.

引用本文的文献

1
Neutron spin echo shows pHLIP is capable of retarding membrane thickness fluctuations.
Biochim Biophys Acta Biomembr. 2024 Oct;1866(7):184349. doi: 10.1016/j.bbamem.2024.184349. Epub 2024 May 28.
2
Neutron scattering studies on dynamics of lipid membranes.
Biophys Rev (Melville). 2023 May 22;4(2):021306. doi: 10.1063/5.0144544. eCollection 2023 Jun.
3
Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2).
Adv Exp Med Biol. 2023;1422:61-85. doi: 10.1007/978-3-031-21547-6_2.
5
Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes.
Biomolecules. 2022 Oct 29;12(11):1591. doi: 10.3390/biom12111591.
6
Single-molecule fluorescence vistas of how lipids regulate membrane proteins.
Biochem Soc Trans. 2021 Aug 27;49(4):1685-1694. doi: 10.1042/BST20201074.
7
Collective dynamics in lipid membranes containing transmembrane peptides.
Soft Matter. 2021 Jun 16;17(23):5671-5681. doi: 10.1039/d1sm00314c.
8
Effect of gold nanoparticle incorporation into oil-swollen surfactant lamellar membranes.
Struct Dyn. 2020 Dec 15;7(6):065102. doi: 10.1063/4.0000041. eCollection 2020 Nov.
9
Enhanced dynamics in the anomalous melting regime of DMPG lipid membranes.
Struct Dyn. 2020 Oct 16;7(5):054704. doi: 10.1063/4.0000031. eCollection 2020 Sep.
10
Scaling relationships for the elastic moduli and viscosity of mixed lipid membranes.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23365-23373. doi: 10.1073/pnas.2008789117. Epub 2020 Sep 3.

本文引用的文献

1
The very small angle neutron scattering instrument at the National Institute of Standards and Technology.
J Appl Crystallogr. 2022 Feb 27;55(Pt 2):271-283. doi: 10.1107/S1600576722000826. eCollection 2022 Apr 1.
2
DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data.
J Res Natl Inst Stand Technol. 2009 Dec 1;114(6):341-58. doi: 10.6028/jres.114.025. Print 2009 Nov-Dec.
3
Atomistic simulations of pore formation and closure in lipid bilayers.
Biophys J. 2014 Jan 7;106(1):210-9. doi: 10.1016/j.bpj.2013.11.4486.
4
Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4476-81. doi: 10.1073/pnas.1221075110. Epub 2013 Mar 4.
5
Lipid bilayers and membrane dynamics: insight into thickness fluctuations.
Phys Rev Lett. 2012 Aug 3;109(5):058102. doi: 10.1103/PhysRevLett.109.058102. Epub 2012 Jul 31.
6
Bending elasticity of saturated and monounsaturated phospholipid membranes studied by the neutron spin echo technique.
J Phys Condens Matter. 2009 Apr 15;21(15):155104. doi: 10.1088/0953-8984/21/15/155104. Epub 2009 Mar 20.
7
Thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides.
Phys Rev Lett. 2010 Jul 16;105(3):038101. doi: 10.1103/PhysRevLett.105.038101. Epub 2010 Jul 13.
9
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
10
Observation of local thickness fluctuations in surfactant membranes using neutron spin echo.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031606. doi: 10.1103/PhysRevE.80.031606. Epub 2009 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验