Suppr超能文献

从上皮细胞层三维变形的离散模型到连续介质模型

From discrete to continuum models of three-dimensional deformations in epithelial sheets.

作者信息

Murisic Nebojsa, Hakim Vincent, Kevrekidis Ioannis G, Shvartsman Stanislav Y, Audoly Basile

机构信息

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.

CNRS & Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.

出版信息

Biophys J. 2015 Jul 7;109(1):154-63. doi: 10.1016/j.bpj.2015.05.019.

Abstract

Epithelial tissue, in which cells adhere tightly to each other and to the underlying substrate, is one of the four major tissue types in adult organisms. In embryos, epithelial sheets serve as versatile substrates during the formation of developing organs. Some aspects of epithelial morphogenesis can be adequately described using vertex models, in which the two-dimensional arrangement of epithelial cells is approximated by a polygonal lattice with an energy that has contributions reflecting the properties of individual cells and their interactions. Previous studies with such models have largely focused on dynamics confined to two spatial dimensions and analyzed them numerically. We show how these models can be extended to account for three-dimensional deformations and studied analytically. Starting from the extended model, we derive a continuum plate description of cell sheets, in which the effective tissue properties, such as bending rigidity, are related explicitly to the parameters of the vertex model. To derive the continuum plate model, we duly take into account a microscopic shift between the two sublattices of the hexagonal network, which has been ignored in previous work. As an application of the continuum model, we analyze tissue buckling by a line tension applied along a circular contour, a simplified set-up relevant to several situations in the developmental contexts. The buckling thresholds predicted by the continuum description are in good agreement with the results of stability calculations based on the vertex model. Our results establish a direct connection between discrete and continuum descriptions of cell sheets and can be used to probe a wide range of morphogenetic processes in epithelial tissues.

摘要

上皮组织是成年生物体中四种主要组织类型之一,其中细胞彼此紧密粘附并与下方的基质紧密相连。在胚胎中,上皮细胞层在发育器官形成过程中充当多功能基质。上皮形态发生的某些方面可以使用顶点模型进行充分描述,在该模型中,上皮细胞的二维排列由多边形晶格近似表示,其能量反映了单个细胞的特性及其相互作用。以前使用此类模型的研究主要集中在局限于两个空间维度的动力学,并对其进行了数值分析。我们展示了如何扩展这些模型以考虑三维变形并进行解析研究。从扩展模型出发,我们推导出了细胞层的连续板描述,其中有效组织特性,如弯曲刚度,与顶点模型的参数明确相关。为了推导连续板模型,我们适当考虑了六边形网络的两个子晶格之间的微观位移,这在以前的工作中被忽略了。作为连续模型的一个应用,我们分析了沿圆形轮廓施加的线张力引起的组织屈曲,这是一种与发育背景中的几种情况相关的简化设置。连续描述预测的屈曲阈值与基于顶点模型的稳定性计算结果非常吻合。我们的结果建立了细胞层离散描述和连续描述之间的直接联系,可用于探究上皮组织中广泛的形态发生过程。

相似文献

1
From discrete to continuum models of three-dimensional deformations in epithelial sheets.
Biophys J. 2015 Jul 7;109(1):154-63. doi: 10.1016/j.bpj.2015.05.019.
2
Computational analysis of three-dimensional epithelial morphogenesis using vertex models.
Phys Biol. 2014 Nov 20;11(6):066007. doi: 10.1088/1478-3975/11/6/066007.
3
From cells to tissue: A continuum model of epithelial mechanics.
Phys Rev E. 2017 Aug;96(2-1):022418. doi: 10.1103/PhysRevE.96.022418. Epub 2017 Aug 31.
4
A Mechanistic Collective Cell Model for Epithelial Colony Growth and Contact Inhibition.
Biophys J. 2015 Oct 6;109(7):1347-57. doi: 10.1016/j.bpj.2015.08.003.
5
Epithelial tissue folding pattern in confined geometry.
Biomech Model Mechanobiol. 2020 Jun;19(3):815-822. doi: 10.1007/s10237-019-01249-8. Epub 2019 Nov 14.
6
Nonlinear and nonlocal elasticity in coarse-grained differential-tension models of epithelia.
Phys Rev E. 2019 Feb;99(2-1):022411. doi: 10.1103/PhysRevE.99.022411.
7
Vertex models of epithelial morphogenesis.
Biophys J. 2014 Jun 3;106(11):2291-304. doi: 10.1016/j.bpj.2013.11.4498.
8
Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis.
Biomech Model Mechanobiol. 2015 Apr;14(2):413-25. doi: 10.1007/s10237-014-0613-5. Epub 2014 Sep 17.
9
Computation of the effective mechanical response of biological networks accounting for large configuration changes.
J Mech Behav Biomed Mater. 2016 May;58:28-44. doi: 10.1016/j.jmbbm.2015.09.009. Epub 2015 Sep 30.
10
Reversible network reconnection model for simulating large deformation in dynamic tissue morphogenesis.
Biomech Model Mechanobiol. 2013 Aug;12(4):627-44. doi: 10.1007/s10237-012-0430-7. Epub 2012 Sep 2.

引用本文的文献

1
Vertex models capturing subcellular scales in epithelial tissues.
PLoS Comput Biol. 2025 May 21;21(5):e1012993. doi: 10.1371/journal.pcbi.1012993. eCollection 2025 May.
2
A two-dimensional vertex model for curvy cell-cell interfaces at the subcellular scale.
J R Soc Interface. 2024 Aug;21(217):20240193. doi: 10.1098/rsif.2024.0193. Epub 2024 Aug 28.
3
Generating active T1 transitions through mechanochemical feedback.
Elife. 2023 Apr 11;12:e79862. doi: 10.7554/eLife.79862.
4
Topological morphogenesis of neuroepithelial organoids.
Nat Phys. 2023;19(2):177-183. doi: 10.1038/s41567-022-01822-6. Epub 2022 Nov 21.
5
6
How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale.
Interface Focus. 2022 Oct 14;12(6):20220038. doi: 10.1098/rsfs.2022.0038. eCollection 2022 Dec 6.
7
Linear viscoelastic properties of the vertex model for epithelial tissues.
PLoS Comput Biol. 2022 May 19;18(5):e1010135. doi: 10.1371/journal.pcbi.1010135. eCollection 2022 May.
8
Sculpting with stem cells: how models of embryo development take shape.
Development. 2021 Dec 15;148(24). doi: 10.1242/dev.192914.
9
Derivation of continuum models from discrete models of mechanical forces in cell populations.
J Math Biol. 2021 Dec 8;83(6-7):75. doi: 10.1007/s00285-021-01697-w.
10
Axial elongation of caudalized human organoids mimics aspects of neural tube development.
Development. 2021 Jun 15;148(12). doi: 10.1242/dev.198275. Epub 2021 Jun 18.

本文引用的文献

1
Direct laser manipulation reveals the mechanics of cell contacts in vivo.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1416-21. doi: 10.1073/pnas.1418732112. Epub 2015 Jan 20.
2
Collective motion of cells: from experiments to models.
Integr Biol (Camb). 2014 Sep;6(9):831-54. doi: 10.1039/c4ib00115j.
3
Quantitative 4D analyses of epithelial folding during Drosophila gastrulation.
Development. 2014 Jul;141(14):2895-900. doi: 10.1242/dev.107730. Epub 2014 Jun 19.
4
Vertex models of epithelial morphogenesis.
Biophys J. 2014 Jun 3;106(11):2291-304. doi: 10.1016/j.bpj.2013.11.4498.
5
The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing.
Development. 2013 Oct;140(19):4091-101. doi: 10.1242/dev.094060.
6
PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue.
Dev Cell. 2013 Jun 10;25(5):534-46. doi: 10.1016/j.devcel.2013.04.020. Epub 2013 May 23.
7
Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042724. doi: 10.1103/PhysRevE.87.042724. Epub 2013 Apr 30.
8
Three-dimensional epithelial morphogenesis in the developing Drosophila egg.
Dev Cell. 2013 Feb 25;24(4):400-10. doi: 10.1016/j.devcel.2013.01.017.
9
Mechanical stress inference for two dimensional cell arrays.
PLoS Comput Biol. 2012;8(5):e1002512. doi: 10.1371/journal.pcbi.1002512. Epub 2012 May 17.
10
Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway.
Science. 2012 May 11;336(6082):724-7. doi: 10.1126/science.1221071. Epub 2012 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验