Bambardekar Kapil, Clément Raphaël, Blanc Olivier, Chardès Claire, Lenne Pierre-François
Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM UMR7288, 13009 Marseille, France.
Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM UMR7288, 13009 Marseille, France
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1416-21. doi: 10.1073/pnas.1418732112. Epub 2015 Jan 20.
Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell-cell and cell-ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell-cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.
细胞产生的力会引发各种组织运动和组织形状变化。构成这些动力学基础的细胞骨架元件在细胞 - 细胞和细胞 - 细胞外基质接触处起作用,从而对粘附结构施加局部力。在上皮组织中,细胞接触处的力不平衡会诱导细胞形状变化,如顶端收缩或极化连接重塑,进而驱动组织形态发生。这些过程的动力学已得到充分表征;然而,由于缺乏体内力学测量,细胞形状变化的力学基础在很大程度上仍不清楚。我们开发了一种将光镊与光片显微镜相结合的方法,以探究果蝇早期胚胎中上皮细胞连接的力学特性。我们表明,光阱能够有效地使细胞 - 细胞界面变形,并测量细胞连接处的张力,其大小约为100皮牛。我们还表明,细胞连接处的张力在几秒钟内达到平衡,与驱动形态发生运动的收缩事件相比,这是一个较短的时间尺度。我们还发现,在早期组织形态发生过程中,张力沿细胞界面增加,并在胚带延伸期间细胞插入时变得各向异性。通过进行拉 - 放实验,我们确定了与简单粘弹性模型一致的连接力学的时间依赖性特性。将这个本构定律整合到组织尺度模型中,我们定量预测了局部变形如何在整个组织中传播。