Suppr超能文献

利用双光子成像在猫初级视觉皮层中研究对比度归一化和适应的局部回路。

Local Circuits for Contrast Normalization and Adaptation Investigated with Two-Photon Imaging in Cat Primary Visual Cortex.

作者信息

Keller Andreas J, Martin Kevan A C

机构信息

Institute of Neuroinformatics, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland

Institute of Neuroinformatics, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland.

出版信息

J Neurosci. 2015 Jul 8;35(27):10078-87. doi: 10.1523/JNEUROSCI.0906-15.2015.

Abstract

UNLABELLED

Sensory neurons encode stimulus intensity in their instantaneous spike rate and adjust the set-points of the stimulus-response relationships by adaptation. In the visual cortex, adaptation is crucial because the mechanism of fast gain control (normalization) increases the contrast sensitivity of individual neurons at the cost of encoding a far narrower range of contrasts than is encountered in natural scenes. The mechanism of adaptation, however, is a slow process and has a time constant of seconds. Here we use two-photon calcium imaging of identified excitatory and inhibitory neurons in superficial layers of cat primary visual cortex to answer two questions: for a given set-point, what is range of contrasts represented within a local pool of neurons, and what accounts for the slow time constant of contrast adaptation? We found that a local patch of excitatory neurons has a large diversity of contrast tunings, which effectively extends the range of contrast that can be encoded instantaneously in cortex. Additionally, we identified a pool of parvalbumin-positive GABAergic neurons and neurons in the upper tier of imaging sites that showed a paradoxical slow increase in activity during adaptation, thus implicating them in the slow set-point adaptation of the excitatory population. Our results provide new insights into the circuits and mechanisms underlying cortical adaptation and gain control.

SIGNIFICANCE STATEMENT

Neurons in the primary visual cortex (V1) respond near instantaneously over a limited range of contrasts but can also shift their operating range according to the average contrast of the scene. This "contrast adaptation" takes 5-10 s and ensures that a full range of contrasts can be encoded in V1, while remaining sensitive to small changes in local contrast. By optically recording many layer 2 neurons simultaneously, we discovered that networks of neurons collectively code for a much wider range of contrasts. Whereas most neurons responded to sustained increases in contrast by decreasing their spike firing rates, two types of inhibitory neurons in the cat's visual cortex paradoxically increased their firing rates and so could inhibit other neurons to produce contrast adaptation.

摘要

未标记

感觉神经元通过其瞬时放电率对刺激强度进行编码,并通过适应来调整刺激-反应关系的设定点。在视觉皮层中,适应至关重要,因为快速增益控制(归一化)机制以编码比自然场景中遇到的对比度范围窄得多的代价提高了单个神经元的对比度敏感性。然而,适应机制是一个缓慢的过程,其时间常数为秒级。在这里,我们使用双光子钙成像技术对猫初级视觉皮层浅层中已识别的兴奋性和抑制性神经元进行研究,以回答两个问题:对于给定的设定点,局部神经元池内表示的对比度范围是多少,以及对比度适应的缓慢时间常数是由什么引起的?我们发现,局部兴奋性神经元斑块具有多种对比度调谐,这有效地扩展了皮层中可瞬时编码的对比度范围。此外,我们确定了一群小白蛋白阳性的GABA能神经元以及成像部位上层的神经元,它们在适应过程中活动出现了自相矛盾的缓慢增加,因此表明它们参与了兴奋性群体的缓慢设定点适应。我们的结果为皮层适应和增益控制的潜在电路和机制提供了新的见解。

意义声明

初级视觉皮层(V1)中的神经元在有限的对比度范围内几乎能瞬时做出反应,但也能根据场景的平均对比度改变其工作范围。这种“对比度适应”需要5 - 10秒,并确保V1中可以编码完整的对比度范围,同时对局部对比度的小变化保持敏感。通过同时光学记录许多第2层神经元,我们发现神经元网络共同编码的对比度范围要宽得多。虽然大多数神经元通过降低其放电率来响应对比度的持续增加,但猫视觉皮层中的两种抑制性神经元却自相矛盾地增加了它们的放电率,因此可能抑制其他神经元以产生对比度适应。

相似文献

2
Orientation specificity of contrast adaptation in visual cortical pinwheel centres and iso-orientation domains.
Eur J Neurosci. 2002 Mar;15(5):876-86. doi: 10.1046/j.1460-9568.2002.01912.x.
3
Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.
J Neurosci. 2015 Jul 15;35(28):10268-80. doi: 10.1523/JNEUROSCI.1418-11.2015.
5
Contrast and response gain control depend on cortical map architecture.
Eur J Neurosci. 2015 Dec;42(11):2963-73. doi: 10.1111/ejn.13091. Epub 2015 Oct 29.
6
Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information.
J Opt Soc Am A Opt Image Sci Vis. 2007 Jun;24(6):1529-37. doi: 10.1364/josaa.24.001529.
8
Rapid dynamics of contrast responses in the cat primary visual cortex.
PLoS One. 2011;6(10):e25410. doi: 10.1371/journal.pone.0025410. Epub 2011 Oct 5.
9
A tonic hyperpolarization underlying contrast adaptation in cat visual cortex.
Science. 1997 May 9;276(5314):949-52. doi: 10.1126/science.276.5314.949.
10
Membrane potential and firing rate in cat primary visual cortex.
J Neurosci. 2000 Jan 1;20(1):470-84. doi: 10.1523/JNEUROSCI.20-01-00470.2000.

引用本文的文献

1
Synaptic wiring motifs in posterior parietal cortex support decision-making.
Nature. 2024 Mar;627(8003):367-373. doi: 10.1038/s41586-024-07088-7. Epub 2024 Feb 21.
4
Heterogeneous side effects of cortical inactivation in behaving animals.
Elife. 2021 Sep 10;10:e66400. doi: 10.7554/eLife.66400.
5
Cortical synaptic architecture supports flexible sensory computations.
Curr Opin Neurobiol. 2020 Oct;64:41-45. doi: 10.1016/j.conb.2020.01.013. Epub 2020 Feb 20.
6
Predictive Processing: A Canonical Cortical Computation.
Neuron. 2018 Oct 24;100(2):424-435. doi: 10.1016/j.neuron.2018.10.003.
7
Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex.
Nat Neurosci. 2018 Jun;21(6):851-859. doi: 10.1038/s41593-018-0143-z. Epub 2018 May 21.
8
Translaminar circuits formed by the pyramidal cells in the superficial layers of cat visual cortex.
Brain Struct Funct. 2018 May;223(4):1811-1828. doi: 10.1007/s00429-017-1588-7. Epub 2017 Dec 12.
9
Adaptation towards scale-free dynamics improves cortical stimulus discrimination at the cost of reduced detection.
PLoS Comput Biol. 2017 May 30;13(5):e1005574. doi: 10.1371/journal.pcbi.1005574. eCollection 2017 May.
10
GABAergic Neurons in Ferret Visual Cortex Participate in Functionally Specific Networks.
Neuron. 2017 Mar 8;93(5):1058-1065.e4. doi: 10.1016/j.neuron.2017.02.035.

本文引用的文献

2
Spatial transformations in the parietal cortex using basis functions.
J Cogn Neurosci. 1997 Mar;9(2):222-37. doi: 10.1162/jocn.1997.9.2.222.
3
HelioScan: a software framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and extendibility.
J Neurosci Methods. 2013 Apr 30;215(1):38-52. doi: 10.1016/j.jneumeth.2013.02.006. Epub 2013 Feb 14.
4
Principles governing the operation of synaptic inhibition in dendrites.
Neuron. 2012 Jul 26;75(2):330-41. doi: 10.1016/j.neuron.2012.05.015.
5
TrakEM2 software for neural circuit reconstruction.
PLoS One. 2012;7(6):e38011. doi: 10.1371/journal.pone.0038011. Epub 2012 Jun 19.
6
Normalization as a canonical neural computation.
Nat Rev Neurosci. 2011 Nov 23;13(1):51-62. doi: 10.1038/nrn3136.
7
The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ.
J Physiol. 1926 Apr 23;61(2):151-71. doi: 10.1113/jphysiol.1926.sp002281.
8
Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
J Neurophysiol. 2006 Jan;95(1):271-83. doi: 10.1152/jn.00871.2005. Epub 2005 Sep 28.
9
Neuronal circuits of the neocortex.
Annu Rev Neurosci. 2004;27:419-51. doi: 10.1146/annurev.neuro.27.070203.144152.
10
Response to contrast of electrophysiologically defined cell classes in primary visual cortex.
J Neurosci. 2003 Jul 30;23(17):6936-45. doi: 10.1523/JNEUROSCI.23-17-06936.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验