Mancini Arturo D, Bertrand Gyslaine, Vivot Kevin, Carpentier Éric, Tremblay Caroline, Ghislain Julien, Bouvier Michel, Poitout Vincent
Montreal Diabetes Research Center, Research Center of the University of Montreal Hospital Center (CRCHUM), and Department of Medicine, University of Montreal, Quebec H2X 0A9, Canada.
Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités de Montpellier 1 & 2, 34060 Montpellier, France.
J Biol Chem. 2015 Aug 21;290(34):21131-21140. doi: 10.1074/jbc.M115.644450. Epub 2015 Jul 8.
FFAR1/GPR40 is a seven-transmembrane domain receptor (7TMR) expressed in pancreatic β cells and activated by FFAs. Pharmacological activation of GPR40 is a strategy under consideration to increase insulin secretion in type 2 diabetes. GPR40 is known to signal predominantly via the heterotrimeric G proteins Gq/11. However, 7TMRs can also activate functionally distinct G protein-independent signaling via β-arrestins. Further, G protein- and β-arrestin-based signaling can be differentially modulated by different ligands, thus eliciting ligand-specific responses ("biased agonism"). Whether GPR40 engages β-arrestin-dependent mechanisms and is subject to biased agonism is unknown. Using bioluminescence resonance energy transfer-based biosensors for real-time monitoring of cell signaling in living cells, we detected a ligand-induced GPR40-β-arrestin interaction, with the synthetic GPR40 agonist TAK-875 being more effective than palmitate or oleate in recruiting β-arrestins 1 and 2. Conversely, TAK-875 acted as a partial agonist of Gq/11-dependent GPR40 signaling relative to both FFAs. Pharmacological blockade of Gq activity decreased FFA-induced insulin secretion. In contrast, knockdown or genetic ablation of β-arrestin 2 in an insulin-secreting cell line and mouse pancreatic islets, respectively, uniquely attenuated the insulinotropic activity of TAK-875, thus providing functional validation of the biosensor data. Collectively, these data reveal that in addition to coupling to Gq/11, GPR40 is functionally linked to a β-arrestin 2-mediated insulinotropic signaling axis. These observations expose previously unrecognized complexity for GPR40 signal transduction and may guide the development of biased agonists showing improved clinical profile in type 2 diabetes.
游离脂肪酸受体1/ G蛋白偶联受体40(FFAR1/GPR40)是一种七跨膜结构域受体(7TMR),表达于胰腺β细胞,并由游离脂肪酸(FFA)激活。GPR40的药理学激活是一种正在考虑用于增加2型糖尿病患者胰岛素分泌的策略。已知GPR40主要通过异源三聚体G蛋白Gq/11进行信号传导。然而,7TMR也可以通过β-抑制蛋白激活功能上不同的非G蛋白依赖性信号传导。此外,基于G蛋白和β-抑制蛋白的信号传导可被不同配体差异调节,从而引发配体特异性反应(“偏向性激动作用”)。GPR40是否参与β-抑制蛋白依赖性机制以及是否存在偏向性激动作用尚不清楚。我们使用基于生物发光共振能量转移的生物传感器对活细胞中的细胞信号进行实时监测,检测到配体诱导的GPR40-β-抑制蛋白相互作用,合成的GPR40激动剂TAK-875在募集β-抑制蛋白1和2方面比棕榈酸酯或油酸更有效。相反,相对于两种FFA,TAK-875作为Gq/11依赖性GPR40信号传导的部分激动剂。Gq活性的药理学阻断降低了FFA诱导的胰岛素分泌。相比之下,分别在胰岛素分泌细胞系和小鼠胰岛中敲低或基因敲除β-抑制蛋白2,可独特地减弱TAK-875的促胰岛素活性,从而为生物传感器数据提供功能验证。总体而言,这些数据表明,除了与Gq/11偶联外,GPR40在功能上还与β-抑制蛋白2介导的促胰岛素信号轴相关。这些观察结果揭示了GPR40信号转导中以前未被认识到的复杂性,并可能指导在2型糖尿病中表现出改善临床特征的偏向性激动剂的开发。