Suppr超能文献

使用极紫外辐射源的相干衍射成像进行癌细胞分类。

Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source.

作者信息

Zürch Michael, Foertsch Stefan, Matzas Mark, Pachmann Katharina, Kuth Rainer, Spielmann Christian

机构信息

Friedrich-Schiller-University Jena , Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Max-Wien-Platz 1, Jena 07743, Germany.

Siemens AG , Healthcare Sector Strategy, Hartmann Street 16, Erlangen 91052, Germany.

出版信息

J Med Imaging (Bellingham). 2014 Oct;1(3):031008. doi: 10.1117/1.JMI.1.3.031008. Epub 2014 Oct 3.

Abstract

In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses.

摘要

在癌症治疗中,非常希望能够实时对单个癌细胞进行分类。标准方法是聚合酶链反应,这需要大量的资源和时间。在此,我们提出一种用于快速分类不同细胞类型的创新方法:我们测量用相干极紫外(XUV)激光产生的辐射照射单个细胞时的衍射图案。这些图案在后续步骤中能够区分不同的乳腺癌细胞类型。此外,物体的形态可以从具有亚微米分辨率的衍射图案中恢复。在原理验证实验中,我们在涂有金的二氧化硅载玻片上制备了单个MCF7和SKBR3乳腺癌细胞。激光驱动的XUV光源的输出聚焦到单个未染色且未标记的癌细胞上。利用所得的衍射图案,我们能够清楚地识别不同的细胞类型。通过改进的装置,不仅能够以高通量对循环肿瘤细胞进行分类,还能够识别更小的物体,如细菌甚至病毒。

相似文献

1
Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source.
J Med Imaging (Bellingham). 2014 Oct;1(3):031008. doi: 10.1117/1.JMI.1.3.031008. Epub 2014 Oct 3.
3
4
Opening a new route to multiport coherent XUV sources via intracavity high-order harmonic generation.
Light Sci Appl. 2020 Sep 24;9:168. doi: 10.1038/s41377-020-00405-5. eCollection 2020.
5
6
Laboratory setup for extreme ultraviolet coherence tomography driven by a high-harmonic source.
Rev Sci Instrum. 2019 Nov 1;90(11):113702. doi: 10.1063/1.5102129.
7
Collinear generation of ultrashort UV and XUV pulses.
Opt Express. 2010 Apr 26;18(9):9173-80. doi: 10.1364/OE.18.009173.
8
XUV coherent diffraction imaging in reflection geometry with low numerical aperture.
Opt Express. 2013 Sep 9;21(18):21131-47. doi: 10.1364/OE.21.021131.

引用本文的文献

1
Boron-Implanted Black Silicon Photodiode with Close-to-Ideal Responsivity from 200 to 1000 nm.
ACS Photonics. 2023 May 22;10(6):1735-1741. doi: 10.1021/acsphotonics.2c01984. eCollection 2023 Jun 21.
4
Detecting Swelling States of Red Blood Cells by "Cell-Fluid Coupling Spectroscopy".
Adv Sci (Weinh). 2016 Oct 13;4(2):1600238. doi: 10.1002/advs.201600238. eCollection 2017 Feb.

本文引用的文献

1
Capturing rare cells from blood using a packed bed of custom-synthesized chitosan microparticles.
J Mater Chem B. 2013 Sep 14;1(34):4313-4319. doi: 10.1039/c3tb20818d. Epub 2013 Jul 16.
2
4
Full field tabletop EUV coherent diffractive imaging in a transmission geometry.
Opt Express. 2013 Sep 23;21(19):21970-80. doi: 10.1364/OE.21.021970.
5
XUV coherent diffraction imaging in reflection geometry with low numerical aperture.
Opt Express. 2013 Sep 9;21(18):21131-47. doi: 10.1364/OE.21.021131.
6
Phase retrieval algorithms: a personal tour [Invited].
Appl Opt. 2013 Jan 1;52(1):45-56. doi: 10.1364/AO.52.000045.
7
Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser.
Science. 2013 Jan 11;339(6116):227-230. doi: 10.1126/science.1229663. Epub 2012 Nov 29.
9
Femtosecond dark-field imaging with an X-ray free electron laser.
Opt Express. 2012 Jun 4;20(12):13501-12. doi: 10.1364/OE.20.013501.
10
High-resolution protein structure determination by serial femtosecond crystallography.
Science. 2012 Jul 20;337(6092):362-4. doi: 10.1126/science.1217737. Epub 2012 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验