Suppr超能文献

病变分割指标对乳腺计算机断层扫描中计算机辅助诊断/检测的影响。

Impact of lesion segmentation metrics on computer-aided diagnosis/detection in breast computed tomography.

作者信息

Kuo Hsien-Chi, Giger Maryellen L, Reiser Ingrid, Drukker Karen, Boone John M, Lindfors Karen K, Yang Kai, Edwards Alexandra

机构信息

University of Chicago , Department of Radiology, 5841 S. Maryland Avenue, Chicago 60637, Illinois, United States.

University of California at Davis , Department of Radiology, 4860 Y Street, Suite 3100, Sacramento 95817, California, United States.

出版信息

J Med Imaging (Bellingham). 2014 Oct;1(3):031012. doi: 10.1117/1.JMI.1.3.031012. Epub 2014 Dec 24.

Abstract

Evaluation of segmentation algorithms usually involves comparisons of segmentations to gold-standard delineations without regard to the ultimate medical decision-making task. We compare two segmentation evaluations methods-a Dice similarity coefficient (DSC) evaluation and a diagnostic classification task-based evaluation method using lesions from breast computed tomography. In our investigation, we use results from two previously developed lesion-segmentation algorithms [a global active contour model (GAC) and a global with local aspects active contour model]. Although similar DSC values were obtained (0.80 versus 0.77), we show that the global + local active contour (GLAC) model, as compared with the GAC model, is able to yield significantly improved classification performance in terms of area under the receivers operating characteristic (ROC) curve in the task of distinguishing malignant from benign lesions. [Area under the [Formula: see text] compared to 0.63, [Formula: see text]]. This is mainly because the GLAC model yields better detailed information required in the calculation of morphological features. Based on our findings, we conclude that the DSC metric alone is not sufficient for evaluating segmentation lesions in computer-aided diagnosis tasks.

摘要

分割算法的评估通常涉及将分割结果与金标准划定进行比较,而不考虑最终的医学决策任务。我们比较了两种分割评估方法——一种是骰子相似系数(DSC)评估,另一种是基于诊断分类任务的评估方法,使用的是乳腺计算机断层扫描的病变。在我们的研究中,我们使用了两种先前开发的病变分割算法的结果[一种全局活动轮廓模型(GAC)和一种具有局部特征的全局活动轮廓模型]。尽管获得了相似的DSC值(0.80对0.77),但我们表明,与GAC模型相比,全局+局部活动轮廓(GLAC)模型在区分恶性和良性病变的任务中,在接收器操作特征(ROC)曲线下面积方面能够产生显著提高的分类性能。[与0.63相比,[公式:见正文]下面积,[公式:见正文]]。这主要是因为GLAC模型产生了计算形态特征所需的更好的详细信息。基于我们的发现,我们得出结论,仅DSC指标不足以评估计算机辅助诊断任务中的分割病变。

相似文献

1
Impact of lesion segmentation metrics on computer-aided diagnosis/detection in breast computed tomography.
J Med Imaging (Bellingham). 2014 Oct;1(3):031012. doi: 10.1117/1.JMI.1.3.031012. Epub 2014 Dec 24.
7
Computer-aided US diagnosis of breast lesions by using cell-based contour grouping.
Radiology. 2010 Jun;255(3):746-54. doi: 10.1148/radiol.09090001.
9
U-Net breast lesion segmentations for breast dynamic contrast-enhanced magnetic resonance imaging.
J Med Imaging (Bellingham). 2023 Nov;10(6):064502. doi: 10.1117/1.JMI.10.6.064502. Epub 2023 Nov 20.
10
Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.
Adv Exp Med Biol. 2020;1213:59-72. doi: 10.1007/978-3-030-33128-3_4.

引用本文的文献

2
Neutrosophic segmentation of breast lesions for dedicated breast computed tomography.
J Med Imaging (Bellingham). 2018 Jan;5(1):014505. doi: 10.1117/1.JMI.5.1.014505. Epub 2018 Mar 6.
3
Lack of agreement between radiologists: implications for image-based model observers.
J Med Imaging (Bellingham). 2017 Apr;4(2):025502. doi: 10.1117/1.JMI.4.2.025502. Epub 2017 May 3.
4
Optimal reconstruction and quantitative image features for computer-aided diagnosis tools for breast CT.
Med Phys. 2017 May;44(5):1846-1856. doi: 10.1002/mp.12214. Epub 2017 Apr 13.

本文引用的文献

1
Segmentation of breast masses on dedicated breast computed tomography and three-dimensional breast ultrasound images.
J Med Imaging (Bellingham). 2014 Apr;1(1):014501. doi: 10.1117/1.JMI.1.1.014501. Epub 2014 Apr 23.
5
A review of breast tomosynthesis. Part I. The image acquisition process.
Med Phys. 2013 Jan;40(1):014301. doi: 10.1118/1.4770279.
6
Automated detection of mass lesions in dedicated breast CT: a preliminary study.
Med Phys. 2012 Feb;39(2):866-73. doi: 10.1118/1.3678991.
7
High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations.
Eur Radiol. 2012 Jan;22(1):1-8. doi: 10.1007/s00330-011-2169-4. Epub 2011 Jun 9.
8
Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):89-96. doi: 10.1007/978-3-642-15711-0_12.
9
Dedicated breast computed tomography: the optimal cross-sectional imaging solution?
Radiol Clin North Am. 2010 Sep;48(5):1043-54. doi: 10.1016/j.rcl.2010.06.001.
10
Contrast-enhanced dedicated breast CT: initial clinical experience.
Radiology. 2010 Sep;256(3):714-23. doi: 10.1148/radiol.10092311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验