Douglas Lindsay, Bhattacharjee Roma, Fuhrman Jordan, Drukker Karen, Hu Qiyuan, Edwards Alexandra, Sheth Deepa, Giger Maryellen
University of Chicago, Department of Radiology Committee on Medical Physics, Chicago, Illinois, United States.
J Med Imaging (Bellingham). 2023 Nov;10(6):064502. doi: 10.1117/1.JMI.10.6.064502. Epub 2023 Nov 20.
Given the dependence of radiomic-based computer-aided diagnosis artificial intelligence on accurate lesion segmentation, we assessed the performances of 2D and 3D U-Nets in breast lesion segmentation on dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) relative to fuzzy c-means (FCM) and radiologist segmentations.
Using 994 unique breast lesions imaged with DCE-MRI, three segmentation algorithms (FCM clustering, 2D and 3D U-Net convolutional neural networks) were investigated. Center slice segmentations produced by FCM, 2D U-Net, and 3D U-Net were evaluated using radiologist segmentations as truth, and volumetric segmentations produced by 2D U-Net slices and 3D U-Net were compared using FCM as a surrogate reference standard. Fivefold cross-validation by lesion was conducted on the U-Nets; Dice similarity coefficient (DSC) and Hausdorff distance (HD) served as performance metrics. Segmentation performances were compared across different input image and lesion types.
2D U-Net outperformed 3D U-Net for center slice (DSC, HD ) and volume segmentations (DSC, HD ). 2D U-Net outperformed FCM in center slice segmentation (DSC ). The use of second postcontrast subtraction images showed greater performance than first postcontrast subtraction images using the 2D and 3D U-Net (DSC ). Additionally, mass segmentation outperformed nonmass segmentation from first and second postcontrast subtraction images using 2D and 3D U-Nets (DSC, HD ).
Results suggest that 2D U-Net is promising in segmenting mass and nonmass enhancing breast lesions from first and second postcontrast subtraction MRIs and thus could be an effective alternative to FCM or 3D U-Net.
鉴于基于影像组学的计算机辅助诊断人工智能对准确的病灶分割的依赖性,我们评估了二维和三维U-Net在动态对比增强(DCE)磁共振成像(MRI)上对乳腺病灶进行分割的性能,并与模糊C均值(FCM)及放射科医生的分割结果进行比较。
使用994个通过DCE-MRI成像的独特乳腺病灶,研究了三种分割算法(FCM聚类、二维和三维U-Net卷积神经网络)。以放射科医生的分割结果作为金标准,评估FCM、二维U-Net和三维U-Net生成的中心切片分割结果,并以FCM作为替代参考标准,比较二维U-Net切片和三维U-Net生成的体积分割结果。对U-Net进行了基于病灶的五折交叉验证;将骰子相似系数(DSC)和豪斯多夫距离(HD)作为性能指标。比较了不同输入图像和病灶类型的分割性能。
在中心切片(DSC、HD)和体积分割(DSC、HD)方面,二维U-Net的表现优于三维U-Net。在中心切片分割(DSC)方面,二维U-Net优于FCM。使用第二次对比剂注射后减影图像时,二维和三维U-Net的性能优于第一次对比剂注射后减影图像(DSC)。此外,使用二维和三维U-Net时,在第一次和第二次对比剂注射后减影图像上,肿块分割的表现优于非肿块分割(DSC、HD)。
结果表明,二维U-Net在从第一次和第二次对比剂注射后减影MRI中分割乳腺增强的肿块和非肿块病灶方面具有前景,因此可能是FCM或三维U-Net的有效替代方法。