Suppr超能文献

乳腺CT中计算机分割性能与计算机分类性能之间的关系:一项使用RGI分割和LDA分类的模拟研究

Relationship between computer segmentation performance and computer classification performance in breast CT: A simulation study using RGI segmentation and LDA classification.

作者信息

Lee Juhun, Nishikawa Robert M, Reiser Ingrid, Boone John M

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Radiology, The University of Chicago, Chicago, IL, USA.

出版信息

Med Phys. 2018 Jun 19. doi: 10.1002/mp.13054.

Abstract

PURPOSE

Many computer aided diagnosis (CADx) tools for breast cancer begin by fully or semiautomatically segmenting a given breast lesion and then classifying the lesion's likelihood of malignancy using quantitative features extracted from the image. It is often assumed that better segmentation will result in better classification. However, this has not been thoroughly evaluated. The purpose of this study is to evaluate the relationship between computer segmentation performance and computer classification performance.

METHOD

We used 85 breast lesions (32 benign, 56 malignant) from breast computed tomography (CT) cases of 82 women. We prepared one smooth and one sharp iterative image reconstructions (IIR) and a clinical reconstruction for each of the 82 breast CT scans. For each reconstruction, we created 15 segmentation outcomes by applying 15 different segmentation algorithms. Specifically, we simulated 15 segmentation algorithms by changing parameters in a single segmentation algorithm. We then created 15 classification outcomes by conducting quantitative image feature analysis on the segmented image results. Using a 10-fold cross-validation, we evaluated the relationship between segmentation and classification performances.

RESULT

We found a low positive correlation between segmentation and classification performances for the smooth IIR (median Pearson's rho = 0.18), while a moderate positive correlation (median Pearson's rho = 0.4-0.43) was found between the two performances for the sharp IIR and clinical reconstruction. However, we found large variations in both segmentation and classification performances for the sharp IIR and clinical reconstruction. There were cases where segmentation algorithms resulted in similar segmentation performances, but the corresponding classification performances were different. These results indicate that an improvement in segmentation performance does not guarantee an improvement in the corresponding classification performance.

CONCLUSION

Computer segmentation is an indirect variable affecting the computer classification. As better segmentation does not guarantee better classification, we should report both segmentation and classification performances when comparing segmentation algorithms.

摘要

目的

许多用于乳腺癌的计算机辅助诊断(CADx)工具首先对给定的乳腺病变进行全自动化或半自动化分割,然后使用从图像中提取的定量特征对病变的恶性可能性进行分类。人们通常认为更好的分割会带来更好的分类。然而,这一点尚未得到充分评估。本研究的目的是评估计算机分割性能与计算机分类性能之间的关系。

方法

我们使用了82名女性乳腺计算机断层扫描(CT)病例中的85个乳腺病变(32个良性,56个恶性)。对于这82例乳腺CT扫描中的每一例,我们都准备了一种平滑的和一种锐利的迭代图像重建(IIR)以及一种临床重建。对于每种重建,我们通过应用15种不同的分割算法创建了15个分割结果。具体而言,我们通过改变单个分割算法中的参数模拟了15种分割算法。然后,我们对分割后的图像结果进行定量图像特征分析,创建了15个分类结果。使用10折交叉验证,我们评估了分割性能与分类性能之间的关系。

结果

我们发现平滑IIR的分割性能与分类性能之间存在低正相关(中位数Pearson相关系数ρ = 0.18),而锐利IIR和临床重建的这两种性能之间存在中等正相关(中位数Pearson相关系数ρ = 0.4 - 0.43)。然而,我们发现锐利IIR和临床重建的分割性能和分类性能都存在很大差异。存在这样的情况,即分割算法产生了相似的分割性能,但相应的分类性能却不同。这些结果表明,分割性能的提高并不能保证相应分类性能的提高。

结论

计算机分割是影响计算机分类的一个间接变量。由于更好的分割并不能保证更好的分类,我们在比较分割算法时应同时报告分割性能和分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98e/7935026/d546bddae7fd/nihms-1668609-f0001.jpg

相似文献

本文引用的文献

8
Breast-lesion Segmentation Combining B-Mode and Elastography Ultrasound.结合B超和弹性成像超声的乳腺病变分割
Ultrason Imaging. 2016 May;38(3):209-24. doi: 10.1177/0161734615589287. Epub 2015 Jun 10.
10
Mammography segmentation with maximum likelihood active contours.基于最大似然主动轮廓的乳腺钼靶图像分割。
Med Image Anal. 2012 Aug;16(6):1167-86. doi: 10.1016/j.media.2012.05.005. Epub 2012 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验