Suppr超能文献

深度学习辅助数字乳腺 X 线摄影中乳腺病变的计算机辅助诊断。

Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.

机构信息

Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.

Department of Biomedical Engineering, Sana'a Community College, Sana'a, Republic of Yemen.

出版信息

Adv Exp Med Biol. 2020;1213:59-72. doi: 10.1007/978-3-030-33128-3_4.

Abstract

For computer-aided diagnosis (CAD), detection, segmentation, and classification from medical imagery are three key components to efficiently assist physicians for accurate diagnosis. In this chapter, a completely integrated CAD system based on deep learning is presented to diagnose breast lesions from digital X-ray mammograms involving detection, segmentation, and classification. To automatically detect breast lesions from mammograms, a regional deep learning approach called You-Only-Look-Once (YOLO) is used. To segment breast lesions, full resolution convolutional network (FrCN), a novel segmentation model of deep network, is implemented and used. Finally, three conventional deep learning models including regular feedforward CNN, ResNet-50, and InceptionResNet-V2 are separately adopted and used to classify or recognize the detected and segmented breast lesion as either benign or malignant. To evaluate the integrated CAD system for detection, segmentation, and classification, the publicly available and annotated INbreast database is used over fivefold cross-validation tests. The evaluation results of the YOLO-based detection achieved detection accuracy of 97.27%, Matthews's correlation coefficient (MCC) of 93.93%, and F1-score of 98.02%. Moreover, the results of the breast lesion segmentation via FrCN achieved an overall accuracy of 92.97%, MCC of 85.93%, Dice (F1-score) of 92.69%, and Jaccard similarity coefficient of 86.37%. The detected and segmented breast lesions are classified via CNN, ResNet-50, and InceptionResNet-V2 achieving an average overall accuracies of 88.74%, 92.56%, and 95.32%, respectively. The performance evaluation results through all stages of detection, segmentation, and classification show that the integrated CAD system outperforms the latest conventional deep learning methodologies. We conclude that our CAD system could be used to assist radiologists over all stages of detection, segmentation, and classification for diagnosis of breast lesions.

摘要

对于计算机辅助诊断 (CAD),从医学图像中进行检测、分割和分类是有效协助医生进行准确诊断的三个关键组成部分。在本章中,提出了一个完全基于深度学习的集成 CAD 系统,用于从数字 X 射线乳房 X 光片中诊断乳房病变,包括检测、分割和分类。为了从乳房 X 光片中自动检测乳房病变,使用了一种称为“一阶段目标检测”(YOLO)的区域深度学习方法。为了分割乳房病变,实现并使用了一种新的深度网络分割模型——全分辨率卷积网络(FrCN)。最后,分别采用并使用三个传统的深度学习模型,包括常规前馈卷积神经网络、ResNet-50 和 InceptionResNet-V2,对检测和分割的乳房病变进行分类或识别,判断其为良性或恶性。为了评估基于深度学习的集成 CAD 系统的检测、分割和分类性能,使用了公开的、带注释的 INbreast 数据库进行了五重交叉验证测试。基于 YOLO 的检测的评估结果实现了 97.27%的检测准确率、93.93%的马修斯相关系数 (MCC)和 98.02%的 F1 分数。此外,通过 FrCN 进行的乳房病变分割的结果实现了 92.97%的整体准确率、85.93%的 MCC、92.69%的 Dice (F1 分数)和 86.37%的杰卡德相似系数。通过卷积神经网络、ResNet-50 和 InceptionResNet-V2 对检测和分割的乳房病变进行分类,平均整体准确率分别为 88.74%、92.56%和 95.32%。通过检测、分割和分类的所有阶段的性能评估结果表明,该集成 CAD 系统优于最新的传统深度学习方法。我们得出结论,我们的 CAD 系统可用于在检测、分割和分类的所有阶段协助放射科医生进行乳房病变的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验