Suppr超能文献

原发性脑肿瘤的磁共振成像神经形态测量学

Neuromorphometry of primary brain tumors by magnetic resonance imaging.

作者信息

Hevia-Montiel Nidiyare, Rodriguez-Perez Pedro I, Lamothe-Molina Paul J, Arellano-Reynoso Alfonso, Bribiesca Ernesto, Alegria-Loyola Marco A

机构信息

Universidad Nacional Autónoma de México , Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Computer Science Department, Avenue Colon 503-F (x av. Reforma and 62) Centro, Merida-Yucatan 97000, Mexico.

Universidad Nacional Autónoma de México , Computer Science and Engineery, Circuito Escolar s/n Ciudad Universitaria, Distrito Federal 04510, Mexico.

出版信息

J Med Imaging (Bellingham). 2015 Apr;2(2):024503. doi: 10.1117/1.JMI.2.2.024503. Epub 2015 May 12.

Abstract

Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of [Formula: see text], whereas oligodendrogliomas exhibit a mean of [Formula: see text]. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of [Formula: see text], and the necrotic region presented a mean of [Formula: see text]. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor.

摘要

磁共振成像是一种用于脑肿瘤诊断和分类的技术。离散紧致性是二维和三维物体的一种形态学特征。该度量根据相连体素的面积总和来确定离散物体的紧致性,并且已被用于理解非脑肿瘤的形态。我们假设对于脑肿瘤,我们可以改进恶性程度分类。我们分析了20例患有不同亚型原发性脑肿瘤(星形细胞瘤、少突胶质细胞瘤和多形性胶质母细胞瘤,后者又细分为强化肿瘤区域和坏死肿瘤区域)患者的数据。初步结果显示紧致性值与胶质瘤的恶性程度呈负相关。星形细胞瘤的平均值为[公式:见原文],而少突胶质细胞瘤的平均值为[公式:见原文]。相比之下,胶质母细胞瘤的强化区域平均值为[公式:见原文],坏死区域平均值为[公式:见原文]。然而,包被表面的体积和面积与胶质瘤的恶性程度没有关系。离散紧致性似乎是不同恶性程度原发性脑肿瘤之间的一个稳定特征,因为从患有相同类型肿瘤的不同患者中获得了相似的值。

相似文献

1
Neuromorphometry of primary brain tumors by magnetic resonance imaging.
J Med Imaging (Bellingham). 2015 Apr;2(2):024503. doi: 10.1117/1.JMI.2.2.024503. Epub 2015 May 12.
2
[Reappraisal of the Sainte-Anne Hospital classification of oligodendrogliomas in view of retrospective studies].
Neurochirurgie. 2005 Sep;51(3-4 Pt 2):247-53. doi: 10.1016/s0028-3770(05)83485-x.
3
Apparent diffusion coefficient in the evaluation of cerebral gliomas malignancy.
Vojnosanit Pregl. 2015 Oct;72(10):870-5. doi: 10.2298/vsp140229073i.
5
MRI radiomics analysis of molecular alterations in low-grade gliomas.
Int J Comput Assist Radiol Surg. 2018 Apr;13(4):563-571. doi: 10.1007/s11548-017-1691-5. Epub 2017 Dec 21.
6
Differential diagnosis of oligodendroglial and astrocytic tumors using imaging results: the added value of perfusion MR imaging.
Neuroradiology. 2017 Jul;59(7):665-675. doi: 10.1007/s00234-017-1851-x. Epub 2017 May 26.
8
Integrative analysis of diffusion-weighted MRI and genomic data to inform treatment of glioblastoma.
J Neurooncol. 2016 Sep;129(2):289-300. doi: 10.1007/s11060-016-2174-1. Epub 2016 Jul 8.

引用本文的文献

2
Assessing Variability in Brain Tumor Segmentation to Improve Volumetric Accuracy and Characterization of Change.
IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:380-383. doi: 10.1109/BHI.2016.7455914. Epub 2016 Apr 21.

本文引用的文献

1
Computer-aided diagnosis of mass-like lesion in breast MRI: differential analysis of the 3-D morphology between benign and malignant tumors.
Comput Methods Programs Biomed. 2013 Dec;112(3):508-17. doi: 10.1016/j.cmpb.2013.08.016. Epub 2013 Sep 7.
2
Online database of clinical MR and ultrasound images of brain tumors.
Med Phys. 2012 Jun;39(6):3253-61. doi: 10.1118/1.4709600.
3
Neuroimaging: diagnosis and response assessment in glioblastoma.
Cancer J. 2012 Jan-Feb;18(1):26-31. doi: 10.1097/PPO.0b013e318244d7c8.
5
Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images.
Ultrasound Med Biol. 2011 Apr;37(4):539-48. doi: 10.1016/j.ultrasmedbio.2011.01.006.
6
Imaging of brain tumors: functional magnetic resonance imaging and diffusion tensor imaging.
Neuroimaging Clin N Am. 2010 Aug;20(3):379-400. doi: 10.1016/j.nic.2010.04.004.
7
Presurgical mapping of verbal language in brain tumors with functional MR imaging and MR tractography.
Neuroimaging Clin N Am. 2009 Nov;19(4):573-96. doi: 10.1016/j.nic.2009.08.010.
9
The 2007 WHO classification of tumours of the central nervous system.
Acta Neuropathol. 2007 Aug;114(2):97-109. doi: 10.1007/s00401-007-0243-4. Epub 2007 Jul 6.
10
Evaluation of the invasion front pattern of squamous cell cervical carcinoma by measuring classical and discrete compactness.
Comput Med Imaging Graph. 2007 Sep;31(6):428-35. doi: 10.1016/j.compmedimag.2007.03.004. Epub 2007 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验