Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
Interventional Cardiology Department, Charité Medical University - Campus Benjamin Franklin, Berlin, Germany.
J Am Coll Cardiol. 2015 Jul 14;66(2):125-35. doi: 10.1016/j.jacc.2015.05.008.
Computational fluid dynamics allow virtual evaluation of coronary physiology and shear stress (SS). Most studies hitherto assumed the vessel as a single conduit without accounting for the flow through side branches.
This study sought to develop a new approach to reconstruct coronary geometry that also computes outgoing flow through side branches in hemodynamic and biomechanical calculations, using fusion of optical coherence tomography (OCT) and 3-dimensional (3D) angiography.
Twenty-one patients enrolled in the DOCTOR (Does Optical Coherence Tomography Optimize Revascularization) fusion study underwent OCT and 3D-angiography of the target vessel (9 left anterior descending, 2 left circumflex, 10 right coronary artery). Coronary 3D reconstruction was performed by fusion of OCT and angiography, creating a true anatomical tree model (TM) including the side branches, and a traditional single-conduit model (SCM) disregarding the side branches.
The distal coronary pressure to aortic pressure (Pd/Pa) ratio was significantly higher in TMs than in SCMs (0.904 vs. 0.842; p < 0.0001). Agreement between TM and SCM in identifying patients with a Pd/Pa ratio ≤0.80 under basal flow conditions was only k = 0.417 (p = 0.019). Average SS was 4.64 Pascal lower in TMs than in SCMs (p < 0.0001), with marked differences in the point-per-point comparison, ranging from -60.71 to 7.47 Pascal.
True anatomical TMs that take into account the flow through side branches are feasible for accurate hemodynamic and biomechanical calculations. Traditional SCMs underestimate Pd/Pa and are inaccurate for regional SS estimation. Implementation of TMs might improve the accuracy of SS and virtual fractional flow reserve calculations, thus improving the consistency of biomechanical studies.
计算流体动力学允许对冠状动脉生理学和切应力(SS)进行虚拟评估。迄今为止,大多数研究都假设血管是一个单一的管道,而不考虑通过侧支的流量。
本研究旨在开发一种新的方法来重建冠状动脉几何形状,该方法还可以通过融合光学相干断层扫描(OCT)和 3 维(3D)血管造影来计算侧支的流出流量,用于血流动力学和生物力学计算。
21 名患者参加了 DOCTOR(光学相干断层扫描是否优化血运重建)融合研究,接受了目标血管的 OCT 和 3D 血管造影(9 例左前降支,2 例左回旋支,10 例右冠状动脉)。通过 OCT 和血管造影的融合进行冠状动脉 3D 重建,创建一个包括侧支的真实解剖树模型(TM)和一个不考虑侧支的传统单腔模型(SCM)。
与 SCM 相比,TM 的远端冠状动脉压力与主动脉压力(Pd/Pa)比值显著升高(0.904 比 0.842;p<0.0001)。在基础流量条件下,TM 和 SCM 识别 Pd/Pa 比值≤0.80 的患者的一致性仅为 k=0.417(p=0.019)。TM 中的平均 SS 比 SCM 低 4.64 帕斯卡(p<0.0001),点对比较差异显著,范围从-60.71 到 7.47 帕斯卡。
考虑到通过侧支的流量的真实解剖 TM 对于准确的血流动力学和生物力学计算是可行的。传统的 SCM 低估了 Pd/Pa,并且不准确用于区域 SS 估计。TM 的实施可能会提高 SS 和虚拟血流储备分数计算的准确性,从而提高生物力学研究的一致性。