文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Count ratio model reveals bias affecting NGS fold changes.

作者信息

Erhard Florian, Zimmer Ralf

机构信息

Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstraße 17, 80333 München, Germany

Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstraße 17, 80333 München, Germany.

出版信息

Nucleic Acids Res. 2015 Nov 16;43(20):e136. doi: 10.1093/nar/gkv696. Epub 2015 Jul 8.


DOI:10.1093/nar/gkv696
PMID:26160885
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4787746/
Abstract

Various biases affect high-throughput sequencing read counts. Contrary to the general assumption, we show that bias does not always cancel out when fold changes are computed and that bias affects more than 20% of genes that are called differentially regulated in RNA-seq experiments with drastic effects on subsequent biological interpretation. Here, we propose a novel approach to estimate fold changes. Our method is based on a probabilistic model that directly incorporates count ratios instead of read counts. It provides a theoretical foundation for pseudo-counts and can be used to estimate fold change credible intervals as well as normalization factors that outperform currently used normalization methods. We show that fold change estimates are significantly improved by our method by comparing RNA-seq derived fold changes to qPCR data from the MAQC/SEQC project as a reference and analyzing random barcoded sequencing data. Our software implementation is freely available from the project website http://www.bio.ifi.lmu.de/software/lfc.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/e83397fc21b1/gkv696fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/4d12df727f61/gkv696fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/59c4d90a1b53/gkv696fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/fa0155c1009b/gkv696fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/a900615b8b90/gkv696fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/5daef2051018/gkv696fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/fda633cf9463/gkv696fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/28db75ea617b/gkv696fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/e83397fc21b1/gkv696fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/4d12df727f61/gkv696fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/59c4d90a1b53/gkv696fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/fa0155c1009b/gkv696fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/a900615b8b90/gkv696fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/5daef2051018/gkv696fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/fda633cf9463/gkv696fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/28db75ea617b/gkv696fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd8/4787746/e83397fc21b1/gkv696fig8.jpg

相似文献

[1]
Count ratio model reveals bias affecting NGS fold changes.

Nucleic Acids Res. 2015-11-16

[2]
A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.

PLoS One. 2017-5-1

[3]
aFold - using polynomial uncertainty modelling for differential gene expression estimation from RNA sequencing data.

BMC Genomics. 2019-5-10

[4]
Normalization and noise reduction for single cell RNA-seq experiments.

Bioinformatics. 2015-7-1

[5]
Differential gene expression analysis using coexpression and RNA-Seq data.

Bioinformatics. 2013-6-21

[6]
Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates.

Brief Bioinform. 2015-6-24

[7]
PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data.

Stat Med. 2015-4-30

[8]
Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data.

BMC Genomics. 2017-5-25

[9]
Identifying differentially expressed transcripts from RNA-seq data with biological variation.

Bioinformatics. 2012-5-3

[10]
SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.

Bioinformatics. 2015-7-1

引用本文的文献

[1]
Identifying similar populations across independent single cell studies without data integration.

NAR Genom Bioinform. 2025-4-24

[2]
Targeted protein degradation reveals a direct role of SPT6 in RNAPII elongation and termination.

Mol Cell. 2021-8-5

[3]
Prenatal Androgenization Alters the Development of GnRH Neuron and Preoptic Area RNA Transcripts in Female Mice.

Endocrinology. 2020-11-1

[4]
Dissecting newly transcribed and old RNA using GRAND-SLAM.

Bioinformatics. 2018-7-1

[5]
Improved Ribo-seq enables identification of cryptic translation events.

Nat Methods. 2018-3-12

[6]
Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice.

Endocrinology. 2018-4-1

[7]
Integrated transcriptomic analysis of Trichosporon Asahii uncovers the core genes and pathways of fluconazole resistance.

Sci Rep. 2017-12-19

[8]
Detecting circular RNAs: bioinformatic and experimental challenges.

Nat Rev Genet. 2016-10-14

[9]
Molecular Pathology and Personalized Medicine: The Dawn of a New Era in Companion Diagnostics-Practical Considerations about Companion Diagnostics for Non-Small-Cell-Lung-Cancer.

J Pers Med. 2016-1-15

本文引用的文献

[1]
A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium.

Nat Biotechnol. 2014-9

[2]
Widespread context dependency of microRNA-mediated regulation.

Genome Res. 2014-3-25

[3]
PARma: identification of microRNA target sites in AGO-PAR-CLIP data.

Genome Biol. 2013-7-29

[4]
Extensive transcript diversity and novel upstream open reading frame regulation in yeast.

G3 (Bethesda). 2013-2-1

[5]
Differential analysis of gene regulation at transcript resolution with RNA-seq.

Nat Biotechnol. 2012-12-9

[6]
STAR: ultrafast universal RNA-seq aligner.

Bioinformatics. 2012-10-25

[7]
ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions.

Nat Rev Genet. 2012-10-23

[8]
Structural bias in T4 RNA ligase-mediated 3'-adapter ligation.

Nucleic Acids Res. 2012-1-12

[9]
Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes.

Proc Natl Acad Sci U S A. 2012-1-9

[10]
The rocks and shallows of deep RNA sequencing: Examples in the Vibrio cholerae RNome.

RNA. 2011-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索