Lárraga-Gutiérrez José Manuel
Departamento de Física, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México, D.F., México. Laboratorio de Física Médica, Instituto Nacional de Neurlogía y Neurocirugía, Insurgentes sur 3877, México, D.F., C.P. 14269, México.
Phys Med Biol. 2015 Aug 7;60(15):5813-31. doi: 10.1088/0031-9155/60/15/5813. Epub 2015 Jul 10.
Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm × 1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%-with the exception of the IBA-PFD-for field sizes between 1.5 cm × 1.5 cm and 5 cm × 5 cm. For the 1 cm × 1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated [Formula: see text] is encouraged for field sizes less than or equal to 1 cm × 1 cm for the dosimeters used in this work.
最近,阿方索等人提出了一种用于小尺寸和非标准射野剂量学的新形式。所提出的新形式强烈基于通过蒙特卡罗模拟方法计算特定探测器的射束校正因子,这考虑了小射野与机器特定参考射野之间探测器响应的差异。准确计算特定探测器的射束校正因子需要精确了解直线加速器、探测器几何形状和组成材料。目前的工作表明,对于特定的一组探测器,使用雏菊链校正方法可以通过实验确定水中的射野因子,直至射野尺寸达到1 cm×1 cm。所研究的探测器有:三个微型电离室(PTW - 31014、PTW - 31006、IBA - CC01)、三个硅基二极管(PTW - 60018、IBA - SFD和IBA - PFD)以及一个合成金刚石探测器(PTW - 60019)。在水模中10 cm深度处,源轴距为100 cm的条件下,对6 MV光子束进行了蒙特卡罗模拟和实验测量。结果表明,对于1.5 cm×1.5 cm至5 cm×5 cm的射野尺寸,实验测量值与蒙特卡罗计算的射野因子之间的差异小于0.5%(IBA - PFD除外)。对于1 cm×1 cm的射野尺寸,差异在2%以内。通过使用雏菊链校正方法,可以确定水中的测量射野因子。结果表明,雏菊链校正方法不适用于使用IBA - PFD探测器进行的测量。这是由于探测器封装材料中存在钨粉。对于本工作中使用的剂量仪,当射野尺寸小于或等于1 cm×1 cm时,建议使用蒙特卡罗计算的[公式:见原文]。