Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
Radiation Physics, Department of Medical and Health Sciences, Linköping University, SE-581 85, Linköping, Sweden.
Med Phys. 2019 Nov;46(11):5350-5359. doi: 10.1002/mp.13830. Epub 2019 Oct 4.
To investigate the applicability of output correction factors reported in TRS-483 on 6-MV small-field detector-reading ratios using four solid-state detectors. Also, to investigate variations in 6-MV small-field output factors (OF) among nominally matched linear accelerators (linacs).
The TRS-483 Code of Practice (CoP) introduced and provided output correction factors to be applied to measured detector-reading ratios to obtain OFs for several small-field detectors. Detector readings for 0.5 cm × 0.5 cm to 8 cm × 8 cm fields were measured and normalized to that of 10 cm × 10 cm field giving the detector-reading ratios. Three silicon diodes, IBA PFD, IBA EFD (IBA, Schwarzenbruck, Germany), PTW T60017, and one microdiamond, PTW T60019 (PTW, Freiburg, Germany), were used. Output correction factors from the CoP were applied to measured detector-reading ratios. Measurements were performed on six Clinac and six TrueBeam linacs (Varian Medical Systems, Palo Alto, USA). An investigation of the relationship between the size of small fields and corresponding detector-reading ratio among the linacs was performed by measuring lateral dose profiles for 0.5 cm × 0.5 cm fields to determine the full width half maximum (FWHM). The relationship between the linacs' focal spot size and the small-field detector-reading ratio was investigated by measuring 10 cm × 10 cm lateral dose profiles and determining the penumbra width reflecting the focal spot size. Measurement geometry was as follows: gantry angle = 0°, collimator angle = 0°, source-to surface distance (SSD) = 90 cm, and depth in water = 10 cm.
For a given linac and 0.5 cm × 0.5 cm field, the deviations in detector-reading ratios among the detectors were 9%-15% for the Clinacs and 4%-5% for the TrueBeams. Use of output correction factors reduced these deviations to 6%-12% and 3%-4%, respectively. For field sizes equal to or larger than 0.8 cm × 0.8 cm, the deviations were corrected to 1% using output correction factors for both Clinacs and TrueBeams. For a given detector and 0.5 cm × 0.5 cm field, the deviations in detector-reading ratios among the linacs were 11%-17% for the Clinacs and 5-6% for the TrueBeams. For 1 cm × 1 cm the deviations were 1%-2% for Clinacs and 1% for TrueBeams. For field sizes larger than 1 cm × 1 cm the deviations were within 1% for both Clinacs and TrueBeams. No relationship between FWHMs and detector-reading ratios for 0.5 cm × 0.5 cm was observed. For Clinacs, larger 10 cm × 10 cm penumbra width yielded lower 0.5 cm × 0.5 cm detector-reading ratio indicating an effect of the focal spot size. For TrueBeams, the spread of penumbra widths was lower compared to Clinacs and no similar relationship was observed.
Output correction factors from the TRS-483 CoP are not sufficient for accurate determination of OF for 0.5 cm × 0.5 cm fields but are applicable for 0.8 cm × 0.8 cm to 8 cm × 8 cm fields. Nominally matched Clinacs and TrueBeams show large differences in detector-reading ratios for fields smaller than 1 cm × 1 cm.
研究在使用四个固态探测器的情况下,TRS-483 报告的输出校正因子在 6MV 小射野探测器读数比中的适用性。此外,还研究了标称匹配的直线加速器(linac)之间 6MV 小射野输出因子(OF)的变化。
TRS-483 实践准则(CoP)引入并提供了要应用于测量探测器读数比的输出校正因子,以获得几个小射野探测器的 OF。测量了 0.5cm×0.5cm 至 8cm×8cm 大小的射野的探测器读数,并将其归一化为 10cm×10cm 射野的探测器读数,得到探测器读数比。使用了三个硅二极管,IBA PFD、IBA EFD(IBA,Schwarzenbruck,德国)、PTW T60017 和一个微金刚石,PTW T60019(PTW,Freiburg,德国)。将 CoP 中的输出校正因子应用于测量的探测器读数比。在六台 Clinac 和六台 TrueBeam 直线加速器(Varian Medical Systems,Palo Alto,USA)上进行了测量。通过测量 0.5cm×0.5cm 射野的侧向剂量分布来确定半高全宽(FWHM),研究了 linacs 中小射野大小与相应探测器读数比之间的关系。通过测量 10cm×10cm 侧向剂量分布并确定反映焦点大小的半影宽度,研究了 linacs 的焦点大小与小射野探测器读数比之间的关系。测量几何形状如下:旋转角度=0°,准直器角度=0°,源皮距(SSD)=90cm,水深=10cm。
对于给定的 linac 和 0.5cm×0.5cm 射野,Clinac 中各探测器的探测器读数比偏差为 9%-15%,TrueBeam 中为 4%-5%。使用输出校正因子可将这些偏差分别降低到 6%-12%和 3%-4%。对于等于或大于 0.8cm×0.8cm 的射野尺寸,使用输出校正因子可将偏差校正到 1%,适用于 Clinac 和 TrueBeam。对于给定的探测器和 0.5cm×0.5cm 射野,Clinac 中各 linac 的探测器读数比偏差为 11%-17%,TrueBeam 中为 5-6%。对于 1cm×1cm,Clinac 的偏差为 1%-2%,TrueBeam 的偏差为 1%。对于大于 1cm×1cm 的射野尺寸,Clinac 和 TrueBeam 的偏差均在 1%以内。未观察到 0.5cm×0.5cm 射野的 FWHM 和探测器读数比之间的关系。对于 Clinac,较大的 10cm×10cm 半影宽度导致较低的 0.5cm×0.5cm 探测器读数比,表明焦点大小的影响。对于 TrueBeam,半影宽度的分散度低于 Clinac,并且没有观察到类似的关系。
TRS-483 CoP 的输出校正因子对于准确确定 0.5cm×0.5cm 射野的 OF 是不够的,但适用于 0.8cm×0.8cm 至 8cm×8cm 射野。标称匹配的 Clinac 和 TrueBeam 在小于 1cm×1cm 的射野中显示出探测器读数比的较大差异。