Suppr超能文献

使用子宫肌电图信号的经验模态分解分析改进早产预测

Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals.

作者信息

Ren Peng, Yao Shuxia, Li Jingxuan, Valdes-Sosa Pedro A, Kendrick Keith M

机构信息

Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China.

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.

出版信息

PLoS One. 2015 Jul 10;10(7):e0132116. doi: 10.1371/journal.pone.0132116. eCollection 2015.

Abstract

Preterm delivery increases the risk of infant mortality and morbidity, and therefore developing reliable methods for predicting its likelihood are of great importance. Previous work using uterine electromyography (EMG) recordings has shown that they may provide a promising and objective way for predicting risk of preterm delivery. However, to date attempts at utilizing computational approaches to achieve sufficient predictive confidence, in terms of area under the curve (AUC) values, have not achieved the high discrimination accuracy that a clinical application requires. In our study, we propose a new analytical approach for assessing the risk of preterm delivery using EMG recordings which firstly employs Empirical Mode Decomposition (EMD) to obtain their Intrinsic Mode Functions (IMF). Next, the entropy values of both instantaneous amplitude and instantaneous frequency of the first ten IMF components are computed in order to derive ratios of these two distinct components as features. Discrimination accuracy of this approach compared to those proposed previously was then calculated using six differently representative classifiers. Finally, three different electrode positions were analyzed for their prediction accuracy of preterm delivery in order to establish which uterine EMG recording location was optimal signal data. Overall, our results show a clear improvement in prediction accuracy of preterm delivery risk compared with previous approaches, achieving an impressive maximum AUC value of 0.986 when using signals from an electrode positioned below the navel. In sum, this provides a promising new method for analyzing uterine EMG signals to permit accurate clinical assessment of preterm delivery risk.

摘要

早产会增加婴儿死亡率和发病率,因此开发可靠的早产风险预测方法至关重要。此前使用子宫肌电图(EMG)记录的研究表明,这可能为预测早产风险提供一种有前景且客观的方法。然而,迄今为止,在利用计算方法以获得足够的预测置信度(以曲线下面积(AUC)值衡量)方面,尚未达到临床应用所需的高辨别准确率。在我们的研究中,我们提出了一种使用EMG记录评估早产风险的新分析方法,该方法首先采用经验模态分解(EMD)来获得其本征模态函数(IMF)。接下来,计算前十一个IMF分量的瞬时幅度和瞬时频率的熵值,以便得出这两个不同分量的比率作为特征。然后使用六个不同的代表性分类器计算该方法与先前提出的方法相比的辨别准确率。最后,分析三个不同的电极位置对早产的预测准确率,以确定哪个子宫EMG记录位置是最佳信号数据。总体而言,我们的结果表明,与先前的方法相比,早产风险预测准确率有了明显提高,当使用位于肚脐下方的电极信号时,最大AUC值达到了令人印象深刻的0.986。总之,这为分析子宫EMG信号以准确临床评估早产风险提供了一种有前景的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0e7/4498691/03ceaa5e83d8/pone.0132116.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验