Karabulut Esra Mahsereci, Ibrikci Turgay
Vocational High School of Higher Education, Gaziantep University, 27310, Gaziantep, Turkey.
J Med Syst. 2014 May;38(5):50. doi: 10.1007/s10916-014-0050-0. Epub 2014 Apr 22.
This study develops a logistic model tree based automation system based on for accurate recognition of types of vertebral column pathologies. Six biomechanical measures are used for this purpose: pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius and grade of spondylolisthesis. A two-phase classification model is employed in which the first step is preprocessing the data by use of Synthetic Minority Over-sampling Technique (SMOTE), and the second one is feeding the classifier Logistic Model Tree (LMT) with the preprocessed data. We have achieved an accuracy of 89.73 %, and 0.964 Area Under Curve (AUC) in computer based automatic detection of the pathology. This was validated via a 10-fold-cross-validation experiment conducted on clinical records of 310 patients. The study also presents a comparative analysis of the vertebral column data with the use of several machine learning algorithms.
本研究开发了一种基于逻辑模型树的自动化系统,用于准确识别脊柱病变类型。为此使用了六种生物力学测量指标:骨盆入射角、骨盆倾斜度、腰椎前凸角、骶骨倾斜度、骨盆半径和椎体滑脱分级。采用了两阶段分类模型,第一步是使用合成少数过采样技术(SMOTE)对数据进行预处理,第二步是将预处理后的数据输入分类器逻辑模型树(LMT)。在基于计算机的病变自动检测中,我们实现了89.73%的准确率和0.964的曲线下面积(AUC)。这通过对310例患者临床记录进行的10倍交叉验证实验得到了验证。该研究还使用几种机器学习算法对脊柱数据进行了对比分析。