Suppr超能文献

基于带有SMOTE预处理的逻辑模型树对脊柱病变进行有效的自动预测。

Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing.

作者信息

Karabulut Esra Mahsereci, Ibrikci Turgay

机构信息

Vocational High School of Higher Education, Gaziantep University, 27310, Gaziantep, Turkey.

出版信息

J Med Syst. 2014 May;38(5):50. doi: 10.1007/s10916-014-0050-0. Epub 2014 Apr 22.

Abstract

This study develops a logistic model tree based automation system based on for accurate recognition of types of vertebral column pathologies. Six biomechanical measures are used for this purpose: pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral slope, pelvic radius and grade of spondylolisthesis. A two-phase classification model is employed in which the first step is preprocessing the data by use of Synthetic Minority Over-sampling Technique (SMOTE), and the second one is feeding the classifier Logistic Model Tree (LMT) with the preprocessed data. We have achieved an accuracy of 89.73 %, and 0.964 Area Under Curve (AUC) in computer based automatic detection of the pathology. This was validated via a 10-fold-cross-validation experiment conducted on clinical records of 310 patients. The study also presents a comparative analysis of the vertebral column data with the use of several machine learning algorithms.

摘要

本研究开发了一种基于逻辑模型树的自动化系统,用于准确识别脊柱病变类型。为此使用了六种生物力学测量指标:骨盆入射角、骨盆倾斜度、腰椎前凸角、骶骨倾斜度、骨盆半径和椎体滑脱分级。采用了两阶段分类模型,第一步是使用合成少数过采样技术(SMOTE)对数据进行预处理,第二步是将预处理后的数据输入分类器逻辑模型树(LMT)。在基于计算机的病变自动检测中,我们实现了89.73%的准确率和0.964的曲线下面积(AUC)。这通过对310例患者临床记录进行的10倍交叉验证实验得到了验证。该研究还使用几种机器学习算法对脊柱数据进行了对比分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验