Vanzo Elisa, Jud Werner, Li Ziru, Albert Andreas, Domagalska Malgorzata A, Ghirardo Andrea, Niederbacher Bishu, Frenzel Juliane, Beemster Gerrit T S, Asard Han, Rennenberg Heinz, Sharkey Thomas D, Hansel Armin, Schnitzler Jörg-Peter
Helmholtz Zentrum München, Research Unit Environmental Simulation at the Institute of Biochemical Plant Pathology, 85764 Neuherberg, Germany (E.V., A.A., A.G., B.N., J.-P.S.);Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria (W.J., A.H.);Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (Z.L., T.D.S.);Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (M.A.D., G.T.S.B., H.A.); andInstitute of Forest Sciences, University of Freiburg, 79110 Freiburg, Germany (J.F., H.R.).
Helmholtz Zentrum München, Research Unit Environmental Simulation at the Institute of Biochemical Plant Pathology, 85764 Neuherberg, Germany (E.V., A.A., A.G., B.N., J.-P.S.);Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria (W.J., A.H.);Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (Z.L., T.D.S.);Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (M.A.D., G.T.S.B., H.A.); andInstitute of Forest Sciences, University of Freiburg, 79110 Freiburg, Germany (J.F., H.R.)
Plant Physiol. 2015 Sep;169(1):560-75. doi: 10.1104/pp.15.00871. Epub 2015 Jul 10.
Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions.
杨树(Populus spp.)人工林排放的异戊二烯会影响大气化学和区域气候。这些排放对温度、[CO₂]和干旱有强烈响应,但这三个气候变化因素的叠加效应在很大程度上尚不清楚。通过进行预测的气候变化情景模拟(在升高的[CO₂]条件下施加周期性和长期性的高温和干旱期[HDSs]),我们分析了排放(IE)和不排放(NE)异戊二烯的杨树基因型的挥发性有机化合物排放、光合性能、叶片生长和总碳(C)积累。我们的目标是:(1)评估异戊二烯排放对植物减轻胁迫和恢复能力的假定有益作用;(2)估计在预测的未来气候条件下的累积净C积累。在HDSs期间,NE植物的叶绿体电子传递速率受损,而IE植物保持与未受胁迫对照相似的高值。在从HDS事件恢复期间,与NE基因型相比,IE植物达到更高的每日净CO₂同化率。无论基因型如何,经历长期性HDSs的植物显示出最低的累积C积累。在模拟环境[CO₂]的对照条件下,IE植物的C积累低于NE植物。总之,关于总C积累和植物生长的数据表明,在升高的[CO₂]条件下,杨树中异戊二烯排放的有益功能对于减轻预测的短期气候极端情况可能不太重要。此外,我们证明,分析多种胁迫下异戊二烯排放和光合性能的冠层尺度动态对于理解提议的未来条件下的整体性能至关重要。