Frydenvang Jens, van Maarschalkerweerd Marie, Carstensen Andreas, Mundus Simon, Schmidt Sidsel Birkelund, Pedas Pai Rosager, Laursen Kristian Holst, Schjoerring Jan K, Husted Søren
Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (J.F., M.v.M., A.C., S.M., S.B.S., P.R.P., K.H.L., J.K.S., S.H.); and FOSS Analytical A/S, 3400 Hillerød, Denmark (M.v.M.)
Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark (J.F., M.v.M., A.C., S.M., S.B.S., P.R.P., K.H.L., J.K.S., S.H.); and FOSS Analytical A/S, 3400 Hillerød, Denmark (M.v.M.).
Plant Physiol. 2015 Sep;169(1):353-61. doi: 10.1104/pp.15.00823. Epub 2015 Jul 10.
Phosphorus (P) is a finite natural resource and an essential plant macronutrient with major impact on crop productivity and global food security. Here, we demonstrate that time-resolved chlorophyll a fluorescence is a unique tool to monitor bioactive P in plants and can be used to detect latent P deficiency. When plants suffer from P deficiency, the shape of the time-dependent fluorescence transients is altered distinctively, as the so-called I step gradually straightens and eventually disappears. This effect is shown to be fully reversible, as P resupply leads to a rapid restoration of the I step. The fading I step suggests that the electron transport at photosystem I (PSI) is affected in P-deficient plants. This is corroborated by the observation that differences at the I step in chlorophyll a fluorescence transients from healthy and P-deficient plants can be completely eliminated through prior reduction of PSI by far-red illumination. Moreover, it is observed that the barley (Hordeum vulgare) mutant Viridis-zb(63), which is devoid of PSI activity, similarly does not display the I step. Among the essential plant nutrients, the effect of P deficiency is shown to be specific and sufficiently sensitive to enable rapid in situ determination of latent P deficiency across different plant species, thereby providing a unique tool for timely remediation of P deficiency in agriculture.
磷(P)是一种有限的自然资源,也是植物必需的大量营养素,对作物生产力和全球粮食安全有重大影响。在此,我们证明时间分辨叶绿素a荧光是监测植物中生物活性磷的独特工具,可用于检测潜在的磷缺乏。当植物遭受磷缺乏时,随时间变化的荧光瞬态形状会发生明显改变,即所谓的I相逐渐变直并最终消失。这种效应被证明是完全可逆的,因为重新供应磷会导致I相迅速恢复。I相的消失表明缺磷植物中光系统I(PSI)的电子传递受到影响。通过远红光照射预先还原PSI,可以完全消除健康植物和缺磷植物叶绿素a荧光瞬态中I相的差异,这一观察结果证实了上述观点。此外,观察到缺乏PSI活性的大麦(Hordeum vulgare)突变体Viridis-zb(63)同样不显示I相。在植物必需营养元素中,缺磷的影响具有特异性且足够灵敏,能够快速原位测定不同植物物种中的潜在磷缺乏,从而为农业中及时纠正磷缺乏提供了独特工具。