Suppr超能文献

与即刻负重牙种植体相关的骨生物力学与应变图谱

Biomechanics and strain mapping in bone as related to immediately-loaded dental implants.

作者信息

Du Jing, Lee Ji-Hyun, Jang Andrew T, Gu Allen, Hossaini-Zadeh Mehran, Prevost Richard, Curtis Donald A, Ho Sunita P

机构信息

Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.

Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of California San Francisco, CA, USA.

出版信息

J Biomech. 2015 Sep 18;48(12):3486-94. doi: 10.1016/j.jbiomech.2015.05.014. Epub 2015 Jun 19.

Abstract

The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, implants were placed immediately and bone-implant contact area, stability implant biomechanics and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscopy (µ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm). X-ray tomograms illustrated that the cause of reduced stiffness was due to limited bone-implant contact. Heterogeneous elemental composition of bone was identified by using energy dispersive X-ray spectroscopy (EDS). The novel aspect of this study was the application of a new experimental mechanics method, that is, digital volume correlation, which allowed mapping of strains in volumes of alveolar bone in contact with a loaded implant. The identified surface and subsurface strain concentrations were a manifestation of load transferred to bone through bone-implant contact based on bone-implant geometry, quality of bone, implant placement, and implant design. 3D strain mapping indicated that strain concentrations are not exclusive to the bone-implant contact regions, but also extend into bone not directly in contact with the implant. The implications of the observed strain concentrations are discussed in the context of mechanobiology. Although a plausible explanation of surgical complications for immediate implant treatment is provided, extrapolation of results is only warranted by future systematic studies on more cadaver specimens and/or in vivo models.

摘要

研究了牙槽骨窝几何形状和骨-种植体接触对种植体生物力学以及由此产生的骨应变分布的影响。在一具尸体下颌骨上拔除侧切牙后,立即植入种植体,并测量骨-种植体接触面积、种植体稳定性生物力学和骨应变。原位生物力学测试与微型X射线显微镜(µ-XRM)相结合表明,与骨-牙周韧带(PDL)-牙齿复合体(791-913N/mm)相比,骨-种植体复合体的刚度较低(701-822N/mm)。X射线断层扫描表明,刚度降低的原因是骨-种植体接触有限。通过能量色散X射线光谱(EDS)确定了骨的异质元素组成。本研究的新颖之处在于应用了一种新的实验力学方法,即数字体积相关法,该方法能够绘制与加载种植体接触的牙槽骨体积中的应变。所确定的表面和亚表面应变集中是基于骨-种植体几何形状、骨质量、种植体植入位置和种植体设计,通过骨-种植体接触传递到骨的载荷的一种表现。三维应变映射表明,应变集中不仅限于骨-种植体接触区域,还延伸到未与种植体直接接触的骨中。在力学生物学的背景下讨论了观察到的应变集中的影响。尽管为即刻种植治疗的手术并发症提供了一个合理的解释,但只有通过对更多尸体标本和/或体内模型进行未来的系统研究,才能保证结果的外推。

相似文献

1
Biomechanics and strain mapping in bone as related to immediately-loaded dental implants.
J Biomech. 2015 Sep 18;48(12):3486-94. doi: 10.1016/j.jbiomech.2015.05.014. Epub 2015 Jun 19.
2
Evaluation of optimal taper of immediately loaded wide-diameter implants: a finite element analysis.
J Oral Implantol. 2013 Apr;39(2):123-32. doi: 10.1563/AAID-JOI-D-11-00104. Epub 2011 Sep 9.
5
Biomechanical evaluation of platform switching: different mismatch sizes, connection types, and implant protocols.
J Periodontol. 2014 Sep;85(9):1161-71. doi: 10.1902/jop.2014.130633. Epub 2014 Mar 17.
6
3D full-field strain in bone-implant and bone-tooth constructs and their morphological influential factors.
J Mech Behav Biomed Mater. 2020 Oct;110:103858. doi: 10.1016/j.jmbbm.2020.103858. Epub 2020 May 19.
7
Immediate loading of tapered implants placed in postextraction sockets: retrospective analysis of the 5-year clinical outcome.
Clin Implant Dent Relat Res. 2012 Aug;14(4):565-74. doi: 10.1111/j.1708-8208.2010.00297.x. Epub 2010 Jul 17.
8
Voxel-based micro-finite element analysis of dental implants in a human cadaveric mandible: Tissue modulus assignment and sensitivity analyses.
J Mech Behav Biomed Mater. 2019 Jun;94:229-237. doi: 10.1016/j.jmbbm.2019.03.008. Epub 2019 Mar 13.
9
Biomechanics of Immediate Postextraction Implant Osseointegration.
J Dent Res. 2018 Aug;97(9):987-994. doi: 10.1177/0022034518765757. Epub 2018 Apr 2.

引用本文的文献

1
On the material dependency of peri-implant morphology and stability in healing bone.
Bioact Mater. 2023 May 19;28:155-166. doi: 10.1016/j.bioactmat.2023.05.006. eCollection 2023 Oct.
3
Effects of implant buccal distance on peri-implant strain: A Micro-CT based finite element analysis.
J Mech Behav Biomed Mater. 2021 Apr;116:104325. doi: 10.1016/j.jmbbm.2021.104325. Epub 2021 Jan 13.
4
Measurement of Internal Implantation Strains in Analogue Bone Using DVC.
Materials (Basel). 2020 Sep 12;13(18):4050. doi: 10.3390/ma13184050.
5
Bone Damage Evolution Around Integrated Metal Screws Using X-Ray Tomography - Pullout and Digital Volume Correlation.
Front Bioeng Biotechnol. 2020 Aug 5;8:934. doi: 10.3389/fbioe.2020.00934. eCollection 2020.
6
3D full-field strain in bone-implant and bone-tooth constructs and their morphological influential factors.
J Mech Behav Biomed Mater. 2020 Oct;110:103858. doi: 10.1016/j.jmbbm.2020.103858. Epub 2020 May 19.
7
Mechanoadaptive strain and functional osseointegration of dental implants in rats.
Bone. 2020 Aug;137:115375. doi: 10.1016/j.bone.2020.115375. Epub 2020 Apr 23.
8
Functional tooth mobility in young pigs.
J Biomech. 2020 May 7;104:109716. doi: 10.1016/j.jbiomech.2020.109716. Epub 2020 Feb 28.
9
Micromechanical modeling of the contact stiffness of an osseointegrated bone-implant interface.
Biomed Eng Online. 2019 Dec 3;18(1):114. doi: 10.1186/s12938-019-0733-3.
10
Biomechanical behaviours of the bone-implant interface: a review.
J R Soc Interface. 2019 Jul 26;16(156):20190259. doi: 10.1098/rsif.2019.0259. Epub 2019 Jul 31.

本文引用的文献

1
Sensitivity of resonance frequency analysis for detecting early implant failure: a case-control study.
Int J Oral Maxillofac Implants. 2014 Mar-Apr;29(2):456-61. doi: 10.11607/jomi.3357.
2
Esthetic outcomes following immediate and early implant placement in the anterior maxilla--a systematic review.
Int J Oral Maxillofac Implants. 2014;29 Suppl:186-215. doi: 10.11607/jomi.2014suppl.g3.3.
4
Assessing bone's adaptive capacity around dental implants: a literature review.
J Am Dent Assoc. 2013 Apr;144(4):362-8. doi: 10.14219/jada.archive.2013.0129.
5
Guided bone regeneration for socket preservation in molar extraction sites: histomorphometric and 3D computerized tomography analysis.
J Oral Implantol. 2013 Aug;39(4):503-9. doi: 10.1563/AAID-JOI-D-13-00001. Epub 2013 Mar 26.
6
Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces.
Acta Biomater. 2013 May;9(5):6663-74. doi: 10.1016/j.actbio.2013.01.014. Epub 2013 Jan 19.
7
Digital image correlation analysis of the load transfer by implant-supported restorations.
J Biomech. 2011 Apr 7;44(6):1008-13. doi: 10.1016/j.jbiomech.2011.02.015. Epub 2011 Mar 5.
10
Clinical and esthetic outcomes of implants placed in postextraction sites.
Int J Oral Maxillofac Implants. 2009;24 Suppl:186-217.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验