Suppr超能文献

微动引起的应变场影响骨-种植体界面的早期修复过程。

Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces.

机构信息

Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Montreal, Quebec, Canada.

出版信息

Acta Biomater. 2013 May;9(5):6663-74. doi: 10.1016/j.actbio.2013.01.014. Epub 2013 Jan 19.

Abstract

Implant loading can create micromotion at the bone-implant interface. The interfacial strain associated with implant micromotion could contribute to regulating the tissue healing response. Excessive micromotion can lead to fibrous encapsulation and implant loosening. Our objective was to characterize the influence of interfacial strain on bone regeneration around implants in mouse tibiae. A micromotion system was used to create strain under conditions of (1) no initial contact between implant and bone and (2) direct bone-implant contact. Pin- and screw-shaped implants were subjected to displacements of 150 or 300 μm for 60 cycles per day for 7 days. Pin-shaped implants placed in five animals were subjected to three sessions of 150 μm displacement per day, with 60 cycles per session. Control implants in both types of interfaces were stabilized throughout the healing period. Experimental strain analyses, microtomography, image-based displacement mapping, and finite element simulations were used to characterize interfacial strain fields. Calcified tissue sections were prepared and Goldner trichrome stained to evaluate the tissue reactions in higher and lower strain regions. In stable implants bone formation occurred consistently around the implants. In implants subjected to micromotion bone regeneration was disrupted in areas of high strain concentrations (e.g. >30%), whereas lower strain values were permissive of bone formation. Increasing implant displacement or number of cycles per day also changed the strain distribution and disturbed bone healing. These results indicate that not only implant micromotion but also the associated interfacial strain field contributes to regulating the interfacial mechanobiology at healing bone-implant interfaces.

摘要

种植体负载会在骨-种植体界面产生微动。与种植体微动相关的界面应变可能有助于调节组织愈合反应。过度的微动会导致纤维包裹和种植体松动。我们的目的是研究界面应变对小鼠胫骨中种植体周围骨再生的影响。微动系统用于在以下两种情况下产生应变:(1)种植体与骨之间没有初始接触;(2)直接的骨-种植体接触。针状和螺钉状种植体每天进行 60 次、每次 150μm 或 300μm 的位移,持续 7 天。在 5 只动物中放置的针状种植体每天接受 3 次 150μm 的位移,每次 60 个循环。两种界面的对照种植体在整个愈合期都保持稳定。实验应变分析、微断层扫描、基于图像的位移映射和有限元模拟用于描述界面应变场。制备钙化组织切片并用 Goldner 三色染色,以评估高应变区和低应变区的组织反应。在稳定的种植体中,骨形成一致地发生在种植体周围。在受到微动的种植体中,骨再生在应变集中区(例如>30%)中断,而较低的应变值则允许骨形成。增加种植体位移或每天的循环次数也会改变应变分布并干扰骨愈合。这些结果表明,不仅种植体微动,而且相关的界面应变场有助于调节愈合骨-种植体界面的界面力学生物学。

相似文献

9
Micromotion of Dental Implants: Basic Mechanical Considerations.牙种植体的微动:基本力学考量
J Med Eng. 2013;2013:265412. doi: 10.1155/2013/265412. Epub 2012 Nov 20.
10
Experimental model for observation of micromotion in cell culture.用于观察细胞培养中微动的实验模型。
J Biomed Mater Res B Appl Biomater. 2005 Feb 15;72(2):379-87. doi: 10.1002/jbm.b.30172.

引用本文的文献

4
Bone Regeneration: Mini-Review and Appealing Perspectives.骨再生:综述与诱人前景
Bioengineering (Basel). 2025 Jan 7;12(1):38. doi: 10.3390/bioengineering12010038.

本文引用的文献

3
Molecular analysis of healing at a bone-implant interface.骨-植入物界面愈合的分子分析
J Dent Res. 2007 Sep;86(9):862-7. doi: 10.1177/154405910708600911.
6
Biomechanical and molecular regulation of bone remodeling.骨重塑的生物力学与分子调控
Annu Rev Biomed Eng. 2006;8:455-98. doi: 10.1146/annurev.bioeng.8.061505.095721.
7
Rapid growth of cartilage rudiments may generate perichondrial structures by mechanical induction.
Biomech Model Mechanobiol. 2007 Jan;6(1-2):127-37. doi: 10.1007/s10237-006-0038-x. Epub 2006 May 12.
10
Microstrain fields for cortical bone in uniaxial tension: optical analysis method.
Proc Inst Mech Eng H. 2005;219(2):119-28. doi: 10.1243/095441105X9291.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验