Dholaniya Pankaj Singh, Ghosh Soumitra, Surampudi Bapi Raju, Kondapi Anand K
Department of Biotechnology and Bioinfomatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India; Cognitive Science Lab, International Institute of Information Technology (IIIT) Hyderabad, Hyderabad 500032, Telangana, India.
School of Computer and Information Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India; Cognitive Science Lab, International Institute of Information Technology (IIIT) Hyderabad, Hyderabad 500032, Telangana, India.
Biosystems. 2015 Sep;135:9-14. doi: 10.1016/j.biosystems.2015.07.002. Epub 2015 Jul 8.
Various approaches have been described to infer the gene interaction network from expression data. Several models based on computational and mathematical methods are available. The fundamental thing in the identification of the gene interaction is their biological relevance. Two genes belonging to the same pathway are more likely to affect the expression of each other than the genes of two different pathways. In the present study, interaction network of genes is described based on upregulated genes during neuronal senescence in the Cerebellar granule neurons of rat. We have adopted a supervised learning method and used it in combination with biological pathway information of the genes to develop a gene interaction network. Further modular analysis of the network has been done to identify senescence-related marker genes. Currently there is no adequate information available about the genes implicated in neuronal senescence. Thus identifying multipath genes belonging to the pathway affected by senescence might be very useful in studying the senescence process.
已经描述了多种从表达数据推断基因相互作用网络的方法。有几种基于计算和数学方法的模型可供使用。识别基因相互作用的根本在于它们的生物学相关性。属于同一途径的两个基因比属于两个不同途径的基因更有可能相互影响表达。在本研究中,基于大鼠小脑颗粒神经元神经元衰老过程中上调的基因描述了基因相互作用网络。我们采用了一种监督学习方法,并将其与基因的生物途径信息结合使用,以构建一个基因相互作用网络。对该网络进行了进一步的模块分析,以识别与衰老相关的标记基因。目前,关于涉及神经元衰老的基因没有足够的可用信息。因此,识别属于受衰老影响途径的多途径基因可能对研究衰老过程非常有用。