Dong Zhen-Zhen, Fan Xing, Sha Li-Na, Wang Yi, Zeng Jian, Kang Hou-Yang, Zhang Hai-Qin, Wang Xiao-Li, Zhang Li, Ding Chun-Bang, Yang Rui-Wu, Zhou Yong-Hong
Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.
BMC Plant Biol. 2015 Jul 12;15:179. doi: 10.1186/s12870-015-0517-2.
Hybridization and polyploidization can be major mechanisms for plant evolution and speciation. Thus, the process of polyploidization and evolutionary history of polyploids is of widespread interest. The species in Elymus L. sensu lato are allopolyploids that share a common St genome from Pseudoroegneria in different combinations with H, Y, P, and W genomes. But how the St genome evolved in the Elymus s. l. during the hybridization and polyploidization events remains unclear. We used nuclear and chloroplast DNA-based phylogenetic analyses to shed some light on this process.
The Maximum likelihood (ML) tree based on nuclear ribosomal internal transcribed spacer region (nrITS) data showed that the Pseudoroegneria, Hordeum and Agropyron species served as the St, H and P genome diploid ancestors, respectively, for the Elymus s. l. polyploids. The ML tree for the chloroplast genes (matK and the intergenic region of trnH-psbA) suggests that the Pseudoroegneria served as the maternal donor of the St genome for Elymus s. l. Furthermore, it suggested that Pseudoroegneria species from Central Asia and Europe were more ancient than those from North America. The molecular evolution in the St genome appeared to be non-random following the polyploidy event with a departure from the equilibrium neutral model due to a genetic bottleneck caused by recent polyploidization.
Our results suggest the ancient common maternal ancestral genome in Elymus s. l. is the St genome from Pseudoroegneria. The evolutionary differentiation of the St genome in Elymus s. l. after rise of this group may have multiple causes, including hybridization and polyploidization. They also suggest that E. tangutorum should be treated as C. dahurica var. tangutorum, and E. breviaristatus should be transferred into Campeiostachys. We hypothesized that the Elymus s. l. species origined in Central Asia and Europe, then spread to North America. Further study of intraspecific variation may help us evaluate our phylogenetic results in greater detail and with more certainty.
杂交和多倍体化可能是植物进化和物种形成的主要机制。因此,多倍体化过程和多倍体的进化历史受到广泛关注。广义披碱草属(Elymus L. sensu lato)的物种均为异源多倍体,它们以不同组合方式共享来自拟鹅观草属(Pseudoroegneria)的一个共同的St基因组,以及H、Y、P和W基因组。但是,在杂交和多倍体化事件中,St基因组在广义披碱草属中是如何进化的仍不清楚。我们使用基于核DNA和叶绿体DNA的系统发育分析来阐明这一过程。
基于核糖体DNA内转录间隔区(nrITS)数据构建的最大似然(ML)树表明,拟鹅观草属、大麦属(Hordeum)和冰草属(Agropyron)的物种分别作为广义披碱草属多倍体的St、H和P基因组二倍体祖先。叶绿体基因(matK和trnH-psbA基因间隔区)构建的ML树表明,拟鹅观草属是广义披碱草属St基因组的母本供体。此外,该结果还表明,来自中亚和欧洲的拟鹅观草属物种比来自北美的更为古老。多倍体事件后,St基因组中的分子进化似乎并非随机发生,由于近期多倍体化导致的遗传瓶颈,其偏离了平衡中性模型。
我们的结果表明,广义披碱草属古老的共同母本祖先基因组是来自拟鹅观草属的St基因组。该类群出现后,广义披碱草属中St基因组的进化分化可能有多种原因,包括杂交和多倍体化。这些结果还表明,应将唐古特披碱草(E. tangutorum)视为达乌里披碱草(C. dahurica)的变种唐古特披碱草,而短芒披碱草(E. breviaristatus)应归入短芒大麦草属(Campeiostachys)。我们推测,广义披碱草属物种起源于中亚和欧洲,然后传播到北美。对种内变异的进一步研究可能有助于我们更详细、更确定地评估我们的系统发育结果。