Suppr超能文献

用于高倍率超级电容器的形貌可控的纳米片状聚吡咯-石墨烯复合材料

Morphology controllable nano-sheet polypyrrole-graphene composites for high-rate supercapacitor.

作者信息

Zhu Jianbo, Xu Youlong, Wang Jie, Wang Jingping, Bai Yang, Du Xianfeng

机构信息

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710021, China.

出版信息

Phys Chem Chem Phys. 2015 Aug 14;17(30):19885-94. doi: 10.1039/c5cp02710a.

Abstract

Polypyrrole is a promising candidate for supercapacitor electrode materials due to its high capacitance and low cost. However, the major bottlenecks restricting its application are its poor rate capability and cycling stability. Herein, we control the morphology of polypyrrole-graphene composites by adjusting the graphene content, causing the typical "cauliflower" morphology of polypyrrole to gradually turn into the homogeneous nano-sheet morphology of these composites. The composites consequently exhibit good thermal stability, high protonation level (37.4%), high electronic conductivity (625.3 S m(-1)), and fast relaxation time (0.22 s). These remarkable characteristics afford a high capacitance of 255.7 F g(-1) at 0.2 A g(-1), still retaining a capacitance of 199.6 F g(-1) at 25.6 A g(-1). In addition, high capacitance retention of up to 93% is observed after 1000 cycles testing at different current densities of 0.2, 1.6, 6.4, 12.8 and 25.6 A g(-1), indicating high stability. The composite's excellent electrochemical performance is mainly attributed to its nano-sheet structure and high electronic conductivity, providing unobstructed pathways for the fast diffusion and exchange of ions/electrons.

摘要

聚吡咯因其高电容和低成本,是超级电容器电极材料的一个有前景的候选者。然而,限制其应用的主要瓶颈是其较差的倍率性能和循环稳定性。在此,我们通过调整石墨烯含量来控制聚吡咯-石墨烯复合材料的形态,使聚吡咯典型的“菜花”形态逐渐转变为这些复合材料的均匀纳米片形态。因此,这些复合材料表现出良好的热稳定性、高质子化水平(37.4%)、高电子电导率(625.3 S m(-1))和快速弛豫时间(0.22 s)。这些显著特性在0.2 A g(-1)时提供了255.7 F g(-1)的高电容,在25.6 A g(-1)时仍保留199.6 F g(-1)的电容。此外,在0.2、1.6、6.4、12.8和25.6 A g(-1)的不同电流密度下进行1000次循环测试后,观察到高达93%的高电容保持率,表明具有高稳定性。该复合材料优异的电化学性能主要归因于其纳米片结构和高电子电导率,为离子/电子的快速扩散和交换提供了畅通的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验