Suppr超能文献

硬模板法制备用于超级电容器电极材料的聚吡咯空心纳米球

Fabrication of Polypyrrole Hollow Nanospheres by Hard-Template Method for Supercapacitor Electrode Material.

作者信息

Hong Renzhou, Zhao Xijun, Lu Rongyu, You Meng, Chen Xiaofang, Yang Xiaoming

机构信息

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

出版信息

Molecules. 2024 May 15;29(10):2331. doi: 10.3390/molecules29102331.

Abstract

Conducting polymers like polypyrrole, polyaniline, and polythiophene with nanostructures offers several advantages, such as high conductivity, a conjugated structure, and a large surface area, making them highly desirable for energy storage applications. However, the direct synthesis of conducting polymers with nanostructures poses a challenge. In this study, we employed a hard template method to fabricate polystyrene@polypyrrole (PS@PPy) core-shell nanoparticles. It is important to note that PS itself is a nonconductive material that hinders electron and ion transport, compromising the desired electrochemical properties. To overcome this limitation, the PS cores were removed using organic solvents to create hollow PPy nanospheres. We investigated six different organic solvents (cyclohexane, toluene, tetrahydrofuran, chloroform, acetone, and N,N-dimethylformamide (DMF)) for etching the PS cores. The resulting hollow PPy nanospheres showed various nanostructures, including intact, hollow, buckling, and collapsed structures, depending on the thickness of the PPy shell and the organic solvent used. PPy nanospheres synthesized with DMF demonstrated superior electrochemical properties compared to those prepared with other solvents, attributed to their highly effective PS removal efficiency, increased specific surface area, and improved charge transport efficiency. The specific capacitances of PPy nanospheres treated with DMF were as high as 350 F/g at 1 A/g. And the corresponding symmetric supercapacitor demonstrated a maximum energy density of 40 Wh/kg at a power density of 490 W/kg. These findings provide new insights into the synthesis method and energy storage mechanisms of PPy nanoparticles.

摘要

具有纳米结构的导电聚合物,如聚吡咯、聚苯胺和聚噻吩,具有若干优势,例如高导电性、共轭结构和大表面积,这使得它们在储能应用中极具吸引力。然而,直接合成具有纳米结构的导电聚合物面临挑战。在本研究中,我们采用硬模板法制备了聚苯乙烯@聚吡咯(PS@PPy)核壳纳米粒子。需要注意的是,PS本身是一种非导电材料,会阻碍电子和离子传输,从而损害所需的电化学性能。为克服这一限制,使用有机溶剂去除PS核以制备中空的PPy纳米球。我们研究了六种不同的有机溶剂(环己烷、甲苯、四氢呋喃、氯仿、丙酮和N,N - 二甲基甲酰胺(DMF))用于蚀刻PS核。所得的中空PPy纳米球呈现出各种纳米结构,包括完整、中空、屈曲和塌陷结构,这取决于PPy壳的厚度和所使用的有机溶剂。与用其他溶剂制备的PPy纳米球相比,用DMF合成的PPy纳米球表现出优异的电化学性能,这归因于其高效的PS去除效率、增加的比表面积和改善的电荷传输效率。用DMF处理的PPy纳米球在1 A/g时的比电容高达350 F/g。相应的对称超级电容器在功率密度为490 W/kg时表现出最大能量密度为40 Wh/kg。这些发现为PPy纳米粒子的合成方法和储能机制提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e7c/11124273/8db76e753ce0/molecules-29-02331-g001.jpg

相似文献

3
4
A simple way to prepare Pd/Fe₃O₄/polypyrrole hollow capsules and their applications in catalysis.
J Colloid Interface Sci. 2015 Jul 15;450:366-373. doi: 10.1016/j.jcis.2015.03.012. Epub 2015 Mar 24.
6
Development of lignin hydrogel reinforced polypyrrole rich electrode material for supercapacitor and sensing applications.
Int J Biol Macromol. 2024 Jul;273(Pt 1):132962. doi: 10.1016/j.ijbiomac.2024.132962. Epub 2024 Jun 5.
8
Construction of a Hierarchical NiCo2S4@PPy Core-Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor.
ACS Appl Mater Interfaces. 2016 Sep 21;8(37):24525-35. doi: 10.1021/acsami.6b05618. Epub 2016 Sep 6.
9
Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites.
Polymers (Basel). 2022 Jan 7;14(2):242. doi: 10.3390/polym14020242.
10
The preparation of hollow AgPt@Pt core-shell nanoparticles loaded on polypyrrole nanosheet modified electrode and its application in immunosensor.
Bioelectrochemistry. 2020 Feb;131:107352. doi: 10.1016/j.bioelechem.2019.107352. Epub 2019 Aug 29.

引用本文的文献

本文引用的文献

1
Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications.
Adv Sci (Weinh). 2023 Mar;10(7):e2206605. doi: 10.1002/advs.202206605. Epub 2023 Jan 1.
2
Kinetics Driven by Hollow Nanoreactors: An Opportunity for Controllable Catalysis.
Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202213612. doi: 10.1002/anie.202213612. Epub 2022 Dec 7.
3
Template-Directed Synthesis of Colloidal Hollow Particles: Mind the Material Used for the Template.
Small. 2022 Oct;18(42):e2204278. doi: 10.1002/smll.202204278. Epub 2022 Sep 7.
4
Conjugated Polymer Polypyrrole Nanostructures: Synthesis and Photocatalytic Applications.
Top Curr Chem (Cham). 2022 Jun 18;380(5):32. doi: 10.1007/s41061-022-00388-4.
5
Structural Tuning of a Flexible and Porous Polypyrrole Film by a Template-Assisted Method for Enhanced Capacitance for Supercapacitor Applications.
ACS Appl Mater Interfaces. 2021 Apr 21;13(15):17726-17735. doi: 10.1021/acsami.1c03553. Epub 2021 Apr 6.
6
Polypyrrole Hollow Microspheres with Boosted Hydrophilic Properties for Enhanced Hydrogen Evolution Water Dissociation Kinetics.
ACS Appl Mater Interfaces. 2020 Dec 23;12(51):57093-57101. doi: 10.1021/acsami.0c16938. Epub 2020 Dec 9.
7
Perspectives for electrochemical capacitors and related devices.
Nat Mater. 2020 Nov;19(11):1151-1163. doi: 10.1038/s41563-020-0747-z. Epub 2020 Aug 3.
8
Tunable Three-Dimensional Nanostructured Conductive Polymer Hydrogels for Energy-Storage Applications.
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):4258-4267. doi: 10.1021/acsami.8b19180. Epub 2019 Jan 17.
10
Latest advances in supercapacitors: from new electrode materials to novel device designs.
Chem Soc Rev. 2017 Nov 13;46(22):6816-6854. doi: 10.1039/c7cs00205j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验