Du Xiaohan, Qin Zhen, Li Zijiong
School of Physics & Electronic Engineering, North China University of Water Resources & Electric Power, Zhengzhou 450045, China.
School of Physics & Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
Nanomaterials (Basel). 2021 May 28;11(6):1420. doi: 10.3390/nano11061420.
Facing the increasing demand for various renewable energy storage devices and wearable and portable energy storage systems, the research on electrode materials with low costs and high energy densities has attracted great attention. Herein, free-standing rGO-CNT nanocomposites have been successfully synthesized by a facile hydrothermal method, in which the hierarchical porous network nanostructure is synergistically assembled by rGO nanosheets and CNT with interlaced network distribution. The rGO-CNT composite electrodes with synergistic enhancement of rGO and CNT exhibit high specific capacitance, excellent rate capability, exceptional conductivity and outstanding long-term cycling stability, especially for the optimal rGO-CNT electrode. Applied to a symmetric supercapacitor systems (SSS) assembled with an rGO-CNT electrode and with 1 M NaSO aqueous solution as the electrolyte, the SSS possesses a high energy density of 12.29 W h kg and an outstanding cycling stability, with 91.42% of initial specific capacitance after 18,000 cycles. Results from these electrochemical properties suggest that the rGO-CNT nanocomposite electrode is a promising candidate for the development of flexible and lightweight high-performance supercapacitors.
面对对各种可再生能源存储设备以及可穿戴和便携式储能系统日益增长的需求,对低成本、高能量密度电极材料的研究引起了极大关注。在此,通过简便的水热法成功合成了独立的rGO-CNT纳米复合材料,其中分级多孔网络纳米结构由具有交错网络分布的rGO纳米片和CNT协同组装而成。具有rGO和CNT协同增强作用的rGO-CNT复合电极表现出高比电容、优异的倍率性能、出色的导电性和卓越的长期循环稳定性,尤其是对于最佳的rGO-CNT电极。应用于以rGO-CNT电极为电极、1 M NaSO水溶液为电解质组装的对称超级电容器系统(SSS),该SSS具有12.29 W h kg的高能量密度和出色的循环稳定性,在18,000次循环后初始比电容保持91.42%。这些电化学性能结果表明,rGO-CNT纳米复合电极是开发柔性、轻质高性能超级电容器的有前途的候选材料。