Suppr超能文献

磷中继基因的染色体排列将孢子形成与DNA复制联系起来。

Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication.

作者信息

Narula Jatin, Kuchina Anna, Lee Dong-Yeon D, Fujita Masaya, Süel Gürol M, Igoshin Oleg A

机构信息

Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.

Division of Biological Sciences, UCSD, San Diego, CA 92093, USA.

出版信息

Cell. 2015 Jul 16;162(2):328-337. doi: 10.1016/j.cell.2015.06.012. Epub 2015 Jul 9.

Abstract

Genes encoding proteins in a common regulatory network are frequently located close to one another on the chromosome to facilitate co-regulation or couple gene expression to growth rate. Contrasting with these observations, here, we demonstrate a functional role for the arrangement of Bacillus subtilis sporulation network genes on opposite sides of the chromosome. We show that the arrangement of two sporulation network genes, one located close to the origin and the other close to the terminus, leads to a transient gene dosage imbalance during chromosome replication. This imbalance is detected by the sporulation network to produce cell-cycle coordinated pulses of the sporulation master regulator Spo0A∼P. This pulsed response allows cells to decide between sporulation and continued vegetative growth during each cell cycle spent in starvation. The simplicity of this coordination mechanism suggests that it may be widely applicable in a variety of gene regulatory and stress-response settings. VIDEO ABSTRACT.

摘要

在共同调控网络中编码蛋白质的基因常常在染色体上彼此相邻定位,以促进协同调控或将基因表达与生长速率相耦合。与这些观察结果形成对比的是,在这里,我们证明了枯草芽孢杆菌芽孢形成网络基因在染色体两侧的排列具有功能作用。我们表明,两个芽孢形成网络基因的排列,一个靠近染色体的起始端,另一个靠近末端,会在染色体复制过程中导致短暂的基因剂量失衡。这种失衡被芽孢形成网络检测到,从而产生芽孢形成主调节因子Spo0A∼P的细胞周期协调脉冲。这种脉冲响应使细胞能够在饥饿状态下度过的每个细胞周期中决定是进行芽孢形成还是继续营养生长。这种协调机制的简单性表明它可能广泛适用于各种基因调控和应激反应情况。视频摘要。

相似文献

1
Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication.
Cell. 2015 Jul 16;162(2):328-337. doi: 10.1016/j.cell.2015.06.012. Epub 2015 Jul 9.
2
Functional requirements of cellular differentiation: lessons from Bacillus subtilis.
Curr Opin Microbiol. 2016 Dec;34:38-46. doi: 10.1016/j.mib.2016.07.011. Epub 2016 Aug 6.
5
Hpr (ScoC) and the phosphorelay couple cell cycle and sporulation in Bacillus subtilis.
FEMS Microbiol Lett. 2004 Feb 9;231(1):99-110. doi: 10.1016/S0378-1097(03)00936-4.
6
Spo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication.
EMBO J. 2006 Aug 23;25(16):3890-9. doi: 10.1038/sj.emboj.7601266. Epub 2006 Aug 3.
8
Slowdown of growth controls cellular differentiation.
Mol Syst Biol. 2016 May 23;12(5):871. doi: 10.15252/msb.20156691.
10
Sporulation of Bacillus subtilis.
Curr Opin Microbiol. 2004 Dec;7(6):579-86. doi: 10.1016/j.mib.2004.10.001.

引用本文的文献

1
Changes in Spo0A~P pulsing frequency control biofilm matrix deactivation.
PLoS Comput Biol. 2025 Jul 7;21(7):e1013263. doi: 10.1371/journal.pcbi.1013263. eCollection 2025 Jul.
2
Biophysical modeling reveals the transcriptional regulatory mechanism of Spo0A, the master regulator in starving .
mSystems. 2025 May 20;10(5):e0007225. doi: 10.1128/msystems.00072-25. Epub 2025 Apr 29.
3
Transcription-replication interactions reveal bacterial genome regulation.
Nature. 2024 Feb;626(7999):661-669. doi: 10.1038/s41586-023-06974-w. Epub 2024 Jan 24.
4
The motility-matrix production switch in -a modeling perspective.
J Bacteriol. 2024 Jan 25;206(1):e0004723. doi: 10.1128/jb.00047-23. Epub 2023 Dec 13.
5
Ploidy in : Very Dynamic and Rapidly Changing Copy Numbers of Both Chromosomes.
Genes (Basel). 2023 Jul 13;14(7):1437. doi: 10.3390/genes14071437.
6
Transcription-replication interactions reveal principles of bacterial genome regulation.
Res Sq. 2023 Mar 31:rs.3.rs-2724389. doi: 10.21203/rs.3.rs-2724389/v1.
7
Chromosomal Position of Ribosomal Protein Genes Affects Long-Term Evolution of Vibrio cholerae.
mBio. 2023 Apr 25;14(2):e0343222. doi: 10.1128/mbio.03432-22. Epub 2023 Mar 2.
9
Real-time detection of response regulator phosphorylation dynamics in live bacteria.
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2201204119. doi: 10.1073/pnas.2201204119. Epub 2022 Aug 22.

本文引用的文献

2
Ultrasensitivity of the Bacillus subtilis sporulation decision.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3513-22. doi: 10.1073/pnas.1213974109. Epub 2012 Nov 19.
3
Regulatory consequences of gene translocation in bacteria.
Nucleic Acids Res. 2012 Oct;40(18):8979-92. doi: 10.1093/nar/gks694. Epub 2012 Jul 24.
4
Pulsed feedback defers cellular differentiation.
PLoS Biol. 2012 Jan;10(1):e1001252. doi: 10.1371/journal.pbio.1001252. Epub 2012 Jan 31.
5
Temporal competition between differentiation programs determines cell fate choice.
Mol Syst Biol. 2011 Dec 6;7:557. doi: 10.1038/msb.2011.88.
6
Reversible and noisy progression towards a commitment point enables adaptable and reliable cellular decision-making.
PLoS Comput Biol. 2011 Nov;7(11):e1002273. doi: 10.1371/journal.pcbi.1002273. Epub 2011 Nov 10.
7
Recent progress in Bacillus subtilis sporulation.
FEMS Microbiol Rev. 2012 Jan;36(1):131-48. doi: 10.1111/j.1574-6976.2011.00310.x. Epub 2011 Oct 25.
8
Dynamical consequences of bandpass feedback loops in a bacterial phosphorelay.
PLoS One. 2011;6(9):e25102. doi: 10.1371/journal.pone.0025102. Epub 2011 Sep 29.
9
Distinct interactions select and maintain a specific cell fate.
Mol Cell. 2011 Aug 19;43(4):528-39. doi: 10.1016/j.molcel.2011.06.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验