Suppr超能文献

核糖体蛋白基因的染色体位置影响霍乱弧菌的长期进化。

Chromosomal Position of Ribosomal Protein Genes Affects Long-Term Evolution of Vibrio cholerae.

机构信息

Instituto de Investigaciones Biotecnológicas "Rodolfo A. Ugalde," IIB-IIBIO, Universidad Nacional de San Martín-CONICET, San Martín, Buenos Aires, Argentina.

Institut Pasteur, Université de Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France.

出版信息

mBio. 2023 Apr 25;14(2):e0343222. doi: 10.1128/mbio.03432-22. Epub 2023 Mar 2.

Abstract

It is unclear how gene order within the chromosome influences genome evolution. Bacteria cluster transcription and translation genes close to the replication origin (). In Vibrio cholerae, relocation of locus (S10), the major locus of ribosomal protein genes, to ectopic genomic positions shows that its relative distance to the correlates to a reduction in growth rate, fitness, and infectivity. To test the long-term impact of this trait, we evolved 12 populations of V. cholerae strains bearing S10 at an -proximal or an -distal location for 1,000 generations. During the first 250 generations, positive selection was the main force driving mutation. After 1,000 generations, we observed more nonadaptative mutations and hypermutator genotypes. Populations fixed inactivating mutations at many genes linked to virulence: flagellum, chemotaxis, biofilm, and quorum sensing. Throughout the experiment, all populations increased their growth rates. However, those bearing S10 close to remained the fittest, indicating that suppressor mutations cannot compensate for the genomic position of the main ribosomal protein locus. Selection and sequencing of the fastest-growing clones allowed us to characterize mutations inactivating, among other sites, flagellum master regulators. Reintroduction of these mutations into the wild-type context led to a ≈10% growth improvement. In conclusion, the genomic location of ribosomal protein genes conditions the evolutionary trajectory of V. cholerae. While genomic content is highly plastic in prokaryotes, gene order is an underestimated factor that conditions cellular physiology and evolution. A lack of suppression enables artificial gene relocation as a tool for genetic circuit reprogramming. The bacterial chromosome harbors several entangled processes such as replication, transcription, DNA repair, and segregation. Replication begins bidirectionally at the replication origin () until the terminal region () organizing the genome along the axis gene order along this axis could link genome structure to cell physiology. Fast-growing bacteria cluster translation genes near . In Vibrio cholerae, moving them away was feasible but at the cost of losing fitness and infectivity. Here, we evolved strains harboring ribosomal genes close or far from . Growth rate differences persisted after 1,000 generations. No mutation was able to compensate for the growth defect, showing that ribosomal gene location conditions their evolutionary trajectory. Despite the high plasticity of bacterial genomes, evolution has sculpted gene order to optimize the ecological strategy of the microorganism. We observed growth rate improvement throughout the evolution experiment that occurred at expense of energetically costly processes such the flagellum biosynthesis and virulence-related functions. From the biotechnological point of view, manipulation of gene order enables altering bacterial growth with no escape events.

摘要

染色体中基因顺序如何影响基因组进化尚不清楚。细菌簇转录和翻译基因靠近复制起点()。在霍乱弧菌中,核糖体蛋白基因的主要基因座(S10)的位置重新定位到异位基因组位置表明,其与复制起点的相对距离与生长速率、适应性和感染力的降低有关。为了测试该特征的长期影响,我们对携带 S10 的霍乱弧菌菌株的 12 个种群进行了 1000 代的进化实验,S10 位于 -近端或 -远端位置。在最初的 250 代中,正选择是驱动突变的主要力量。1000 代后,我们观察到更多的非适应性突变和超突变基因型。在与毒力相关的许多基因中,种群固定了失活突变:鞭毛、趋化性、生物膜和群体感应。在整个实验过程中,所有种群的生长速度都有所提高。然而,那些靠近的 S10 种群仍然是最适应的,这表明抑制突变不能补偿主要核糖体蛋白基因座的基因组位置。对快速生长克隆的选择和测序使我们能够鉴定失活突变,除其他位点外,还有鞭毛主调控因子。将这些突变重新引入野生型环境中,可使生长速度提高约 10%。总之,核糖体蛋白基因的基因组位置决定了霍乱弧菌的进化轨迹。虽然原核生物的基因组内容具有高度的可塑性,但基因顺序是一个被低估的因素,它决定了细胞生理学和进化。缺乏抑制作用使人为基因重定位成为遗传电路重新编程的工具。细菌染色体包含几个纠缠过程,如复制、转录、DNA 修复和分离。复制从复制起点()双向开始,直到末端区域()沿着染色体的 轴组织基因组。沿着这个轴的基因顺序可以将基因组结构与细胞生理学联系起来。快速生长的细菌簇靠近翻译基因。在霍乱弧菌中,将它们移开是可行的,但代价是丧失适应性和感染力。在这里,我们进化了核糖体基因靠近或远离的菌株。1000 代后,生长速度差异仍然存在。没有突变能够补偿生长缺陷,这表明核糖体基因的位置决定了它们的进化轨迹。尽管细菌基因组具有高度的可塑性,但进化已经塑造了基因顺序,以优化微生物的生态策略。我们在整个进化实验中观察到了生长速率的提高,这是以牺牲能量消耗过程为代价的,如鞭毛生物合成和与毒力相关的功能。从生物技术的角度来看,基因顺序的操纵可以改变细菌的生长,而不会出现逃逸事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d99/10127744/e94be38a29a9/mbio.03432-22-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验