Suppr超能文献

造血多能细胞B淋巴细胞谱系定向分化过程中转录开关的计算模型

Computational Modeling of a Transcriptional Switch Underlying B-Lymphocyte Lineage Commitment of Hematopoietic Multipotent Cells.

作者信息

Salerno Luca, Cosentino Carlo, Morrone Giovanni, Amato Francesco

机构信息

Laboratory of Biomechatronics, Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy.

Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy.

出版信息

PLoS One. 2015 Jul 13;10(7):e0132208. doi: 10.1371/journal.pone.0132208. eCollection 2015.

Abstract

Despite progresses in identifying the cellular mechanisms at the basis of the differentiation of hematopoietic stem/progenitor cells, little is known about the regulatory circuitry at the basis of lineage commitment of hematopoietic multipotent progenitors. To address this issue, we propose a computational approach to give further insights in the comprehension of this genetic mechanism. Differently from T lymphopoiesis, however, there is at present no mathematical model describing lineage restriction of multipotent progenitors to early B-cell precursors. Here, we provide a first model-constructed on the basis of current experimental evidence from literature and of publicly available microarray datasets-of the genetic regulatory network driving the cellular fate determination at the stage of lymphoid lineage commitment, with particular regard to the multipotent-B-cell progenitor transition. By applying multistability analysis methods, we are able to assess the capability of the model to capture the experimentally observed switch-like commitment behavior. These methods allow us to confirm the central role of zinc finger protein 521 (ZNF521) in this process, that we had previously reported, and to identify a novel putative functional interaction for ZNF521, which is essential to realize such characteristic behavior. Moreover, using the devised model, we are able to rigorously analyze the mechanisms underpinning irreversibility of the physiological commitment step and to devise a possible reprogramming strategy, based on the combined modification of the expression of ZNF521 and EBF1.

摘要

尽管在确定造血干/祖细胞分化的细胞机制方面取得了进展,但对于造血多能祖细胞谱系定向的调控网络却知之甚少。为了解决这个问题,我们提出了一种计算方法,以便在理解这种遗传机制方面提供进一步的见解。然而,与T淋巴细胞生成不同的是,目前尚无数学模型描述多能祖细胞向早期B细胞前体的谱系限制。在此,我们基于文献中的当前实验证据和公开可用的微阵列数据集,提供了第一个驱动淋巴细胞谱系定向阶段细胞命运决定的遗传调控网络模型,特别是关于多能B细胞祖细胞的转变。通过应用多稳定性分析方法,我们能够评估该模型捕捉实验观察到的开关样定向行为的能力。这些方法使我们能够证实锌指蛋白521(ZNF521)在这一过程中的核心作用,这是我们之前报道过的,并确定了ZNF521一种新的假定功能相互作用,这对于实现这种特征行为至关重要。此外,使用所设计的模型,我们能够严格分析生理定向步骤不可逆性的潜在机制,并基于对ZNF521和EBF1表达的联合修饰设计一种可能的重编程策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a2b/4500571/57c9b8f091e9/pone.0132208.g001.jpg

相似文献

1
Computational Modeling of a Transcriptional Switch Underlying B-Lymphocyte Lineage Commitment of Hematopoietic Multipotent Cells.
PLoS One. 2015 Jul 13;10(7):e0132208. doi: 10.1371/journal.pone.0132208. eCollection 2015.
3
A control-theoretical approach to the identification of a commitment switch in B lymphopoiesis cell fate determination.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5355-8. doi: 10.1109/EMBC.2015.7319601.
4
Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential.
Blood. 2006 Apr 15;107(8):3131-7. doi: 10.1182/blood-2005-08-3412. Epub 2005 Dec 29.
5
Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program.
J Exp Med. 2017 Oct 2;214(10):3085-3104. doi: 10.1084/jem.20161827. Epub 2017 Sep 12.
7
Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF.
Science. 2007 May 11;316(5826):860-6. doi: 10.1126/science.1140881.
8
Lineage promiscuous expression of transcription factors in normal hematopoiesis.
Int J Hematol. 2005 Jun;81(5):361-7. doi: 10.1532/ijh97.05003.
9
Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors.
J Exp Med. 2005 Mar 21;201(6):971-9. doi: 10.1084/jem.20042393. Epub 2005 Mar 14.
10
From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment.
Curr Opin Immunol. 2010 Apr;22(2):177-84. doi: 10.1016/j.coi.2010.02.003. Epub 2010 Mar 6.

引用本文的文献

1
A General Approach for the Modelling of Negative Feedback Physiological Control Systems.
Bioengineering (Basel). 2023 Jul 14;10(7):835. doi: 10.3390/bioengineering10070835.
3
Patient genetics is linked to chronic wound microbiome composition and healing.
PLoS Pathog. 2020 Jun 18;16(6):e1008511. doi: 10.1371/journal.ppat.1008511. eCollection 2020 Jun.
5
From Discrete to Continuous Modeling of Lymphocyte Development and Plasticity in Chronic Diseases.
Front Immunol. 2019 Aug 20;10:1927. doi: 10.3389/fimmu.2019.01927. eCollection 2019.
6
ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells.
Int J Mol Sci. 2018 Dec 18;19(12):4095. doi: 10.3390/ijms19124095.
8
RACIPE: a computational tool for modeling gene regulatory circuits using randomization.
BMC Syst Biol. 2018 Jun 19;12(1):74. doi: 10.1186/s12918-018-0594-6.
9
ZNF423: A New Player in Estrogen Receptor-Positive Breast Cancer.
Front Endocrinol (Lausanne). 2018 May 18;9:255. doi: 10.3389/fendo.2018.00255. eCollection 2018.
10
Kinetic models of hematopoietic differentiation.
Wiley Interdiscip Rev Syst Biol Med. 2019 Jan;11(1):e1424. doi: 10.1002/wsbm.1424. Epub 2018 Apr 16.

本文引用的文献

3
Establishment and maintenance of B cell identity.
Cold Spring Harb Symp Quant Biol. 2013;78:23-30. doi: 10.1101/sqb.2013.78.020057. Epub 2014 Apr 14.
4
Stage-specific control of early B cell development by the transcription factor Ikaros.
Nat Immunol. 2014 Mar;15(3):283-93. doi: 10.1038/ni.2828. Epub 2014 Feb 9.
7
Model selection in systems and synthetic biology.
Curr Opin Biotechnol. 2013 Aug;24(4):767-74. doi: 10.1016/j.copbio.2013.03.012. Epub 2013 Apr 8.
9
Regulation of early adipose commitment by Zfp521.
PLoS Biol. 2012;10(11):e1001433. doi: 10.1371/journal.pbio.1001433. Epub 2012 Nov 27.
10
The many roles of IL-7 in B cell development; mediator of survival, proliferation and differentiation.
Semin Immunol. 2012 Jun;24(3):198-208. doi: 10.1016/j.smim.2012.02.001. Epub 2012 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验