Panciera F, Chou Y-C, Reuter M C, Zakharov D, Stach E A, Hofmann S, Ross F M
1] Department of Engineering, University of Cambridge, 9 J. J. Thomson Avenue Cambridge CB3 0FA, UK [2] IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.
1] IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598, USA [2] Department of Electrophysics, National Chiao Tung University, 1001 University Road Hsinchu City 300, Taiwan [3] Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nat Mater. 2015 Aug;14(8):820-5. doi: 10.1038/nmat4352. Epub 2015 Jul 13.
Nanowire growth by the vapour-liquid-solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a 'mixing bowl', in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.
通过气-液-固(VLS)工艺生长纳米线能够高度控制纳米线的组成、直径、生长方向、分支与扭结、周期性孪晶以及晶体结构。VLS生长的纳米线之所以产生巨大影响,是因为其结构具有多样性,从而催生了从固态照明和单光子源到热电器件等一系列应用。在此,我们表明,通过将催化纳米线生长的液滴用作“混合碗”,可以进一步调整这些纳米结构的形态,在“混合碗”中,生长材料被依次供应以形成新相的晶核。这些相在液体中生长,呈现出多面纳米晶体的形状,然后通过进一步生长被并入纳米线中。我们通过将金属硅化物纳米晶体外延并入具有无缺陷界面的硅纳米线中,证明了这一概念,并讨论了如何将这一过程推广以创建基于纳米线的复杂异质结构。